3.124mg of I-131 is present after 32.4 days.
The 131 I isotope emits radiation and particles and has an 8-day half-life. Orally administered, it concentrates in the thyroid, where the thyroid gland is destroyed by the particles.
What is Half life?
The time required for half of something to undergo a process: such as. a : the time required for half of the atoms of a radioactive substance to become disintegrated.
Half of the iodine-131 will still be present after 8.1 days.
The amount of iodine-131 will again be halved after 8.1 additional days, for a total of 8.1+8.1=16.2 days, reaching (1/2)(1/2)=1/4 of the initial amount.
The quantity of iodine-131 will again be halved after 8.1 more days, for a total of 16.2+8.1+8.1=32.4 days, to (1/4)(1/2)(1/2)=1/16 of the initial quantity.
If the original dose of iodine-131 was 50mg, the residual dose will be (50mg)*(1/16)=3.124mg after 32.4 days.
Learn more about the Half life of radioactie element with the help of the given link:
brainly.com/question/27891343
#SPJ4
Explanation:
here's the molecule you were looking for
The reaction will shift toward the reactants if the volume is cut in half.
<h3 /><h3>Reactants </h3>
The initial components of a chemical reaction are called reactants. Chemical bonds between reactants are broken and new ones are created in order to create products. Reactants and products are listed on the left and right sides, respectively, of the arrow in a chemical equation.
Substances on both sides of an arrow that points left and right are both reactants and products in a chemical process (the reaction proceeds in both directions simultaneously). A chemical equation that is balanced has the same amount of atoms of each element in the reactants and products. Around 1900–1920 is when the word "reactant" was first used. There are instances when the word "reagent" is interchangeable.
Learn more about reactants here:
brainly.com/question/17096236
#SPJ4
Nanochemicals can be defined as chemicals generated by using nanomaterials (materials that possess of size on nanometer dimensions). The nanochemicals are used in multiple different applications including chemical warfare, bicycle making, armor design and military weapons crafting. The most commonly used and observed nanochemicals are carbon nanotubes that are used a ton in industry for applications such as stronger materials (stronger bicycles).
Smart materials are exquisitely designed materials whose property(ies) can be modified with the use of an external stimulus such as temperature, stress, pH, and so on. Some examples of smart materials include shape memory materials, piezoelectric materials, ferrofluids, self-healing materials, and such. Applications involve memory pillows, memory based solar panels (for satellites), light sensitive glasses, and so on.
Specialized materials are made specifically to perform a specified task or function. Applications involve electronic equipment (high purity silicon & germanium), machine tools (high tungsten high carbon steel), dental filling (dental amalgam), and so on.
Calcium fluoride.
Ca is metal, F is non-metal, so they form ionic bond.
Ca as metal can form only positive ion. Ca in the second group, so the charge of Ca ion is 2+. Ca²⁺
F is in the 17th group, so it has 7 electrons on the last level. It is non-metal, non-metal, so it has negative charge -(8-7)=-1. "8" because on the last level cannot be more than 8 electrons. F-ion is F¹⁻.
Ca²⁺ F¹⁻
Number of positive charges should be equal to number of negative charges,
Formula of calcium fluoride
CaF2.
2 atoms Fluorine bond with Calcium.