Step 1: Identify the variables. ...Step 2: Determine the variable range. ...Step 3: Determine the scale of the graph. ...Step 4: Number and label each axis and title the graph.Step 5: Determine the data points and plot on the graph. ...Step 6: Draw the graph.
Answer:
oo.p i wish I could answer that
Explanation:
Answer:
o to increase the frequency of sound waves. It increases the sound waves to a level of frequency that humans cannot hear so you won't be able to hear many things though the wall other then low noises like pounding.
Explanation:
I am in construction class as well as a student teacher for other construction type programs trust me :D
Brainiest would be appreciated
Answer:
the energy of the spring at the start is 400 J.
Explanation:
Given;
mass of the box, m = 8.0 kg
final speed of the box, v = 10 m/s
Apply the principle of conservation of energy to determine the energy of the spring at the start;
Final Kinetic energy of the box = initial elastic potential energy of the spring
K.E = Ux
¹/₂mv² = Ux
¹/₂ x 8 x 10² = Ux
400 J = Ux
Therefore, the energy of the spring at the start is 400 J.
Answer:
1.4E-3J
Explanation:
Given that
Time = 8hrs = 28.8E3 seconds
Intensity= 90dB
D= 0.008m
Radius= 0.004m
So intensity is sound level Bis
10dBlog(I/Io)
I= 10 (B/10dB)Io
= 10( 90/10) x 10^-12
=0.001W/m²
But we know that
I = P/A
P= I πr²
= 5.02 x10^-8W
But energy is power x time
So E= 5.02E-8 x 28.8E3
= 1.4E-3J