Air resistance, also called drag, acts upon a falling body by slowing the body down to thr point where it stops accelerating, and it falls at a constant speed, known as the terminal volocity of a falling object. Air resistance depends on the cross sectional area of the object, which is why the effect of air resistance on a large flat surfaced object is much greater than on a small, streamlined object.
The correct answer is<span> gases, energy, temperature, phases
Gravity and nuclear forces are not encompassed in the kinetic molecular theory as it deals with movement and behavior of gas molecules. It does not include their conversion to other types of energy or anything similar. </span>
A :-) for this question , we should apply
a = v - u by t
Given - u = 4.77 m/s
v = 23.5 m/s
t = 5.18 m/s
Solution -
a = v - u by t
a = 23.5 - 4.77
a = 28.27 m/s^2
.:. The acceleration is 28.27 m/s^2
Answer:

Explanation:
<u>Frictional Force
</u>
When the car is moving along the curve, it receives a force that tries to take it from the road. It's called centripetal force and the formula to compute it is:

The centripetal acceleration a_c is computed as

Where v is the tangent speed of the car and r is the radius of curvature. Replacing the formula into the first one

For the car to keep on the track, the friction must have the exact same value of the centripetal force and balance the forces. The friction force is computed as

The normal force N is equal to the weight of the car, thus

Equating both forces

Simplifying

Substituting the values

