Answer:
a) The strength of gravity decreases if one moved away from Jupiter
b) The strength of gravity increases if one fell into Jupiter
Explanation:
The gravitational attraction is given by Newton law of gravitation as follows;

Where;
G = The universal gravitational constant = 6.67408 × 10⁻¹¹ m³/(kg·s²)
M = The mass of Jupiter
m = The mass of the nearby body
R = The distance between the centers of Jupiter and the body
From the equation, we have that the gravitational strength varies inversely with the square of the separation distance between two bodies
Therefore, as one moves away, R increases, and the strength of gravity reduces
Similarly as the body falls into Jupiter, R, reduces the gravitational strength increases.
The horizontal force applied is 160 N while the velocity is 2.03 m/s.
<h3>What is the speed of the car?</h3>
The work done by the car is obtained as the product of the force and the distance;
W = F x
F = ?
x = 30.0 m
W = 4,800 J
F = 4,800 J/30.0 m
F = 160 N
But F = ma
a = F/m
a = 160 N/2.30 ✕ 10^3-kg
a= 0.069 m/s
Now;
v^2 = u^2 + 2as
u = 0/ms because the car started from rest
v = √2as
v = √2 * 0.069 * 30
v = 2.03 m/s
Learn more about force and work:brainly.com/question/758238
#SPJ1
Answer:
0.2687 approximately 0.27
Explanation:
Diameter = 0.320
Speed = 40.0 rev/min
We are required to find coefficient of static friction between friction and button
The radius can be calculated as
0.320/2
= 0.160m
Then we have the rotational speed w = 40rev/min x 2pi/60
= 4.19 rad/s
umg = mrw²
u = mrw²/mg
u = rw²/g -------(1)
g = 9.8
When we put values into equation 1
0.150m x 4.19² / 9.8
= 0.150m x 17.5561 /9.8
= 0.2689
This is approximately 0.27