Answer:
h = 375 KW/m^2K
Explanation:
Given:
Thermo-couple distances: L_1 = 10 mm , L_2 = 20 mm
steel thermal conductivity k = 15 W / mK
Thermo-couple temperature measurements: T_1 = 50 C , T_2 = 40 C
Air Temp T_∞ = 100 C
Assuming there are no other energy sources, energy balance equation is:
E_in = E_out
q"_cond = q"_conv
Since, its a case 1-D steady state conduction, the total heat transfer rate can be found from Fourier's Law for surfaces 1 and 2
q"_cond = k * (T_1 - T_2) / (L_2 - L_1) = 15 * (50 - 40) / (0.02 - 0.01)
=15KW/m^2
Assuming SS is solid, temperature at the surface exposed to air will be 60 C since its gradient is linear in the case of conduction, and there are two temperatures given in the problem. Convection coefficient can be found from Newton's Law of cooling:
q"_conv = h * ( T_∞ - T_s ) ----> h = q"_conv / ( T_∞ - T_s )
h = 15000 W / (100 - 60 ) C = 375 KW/m^2K
That due to the specific tasks that needs to be accomplished by each program to make an all encompassing program would be inefficient and full of bugs
Answer You ask your coach
Answer:
Viscosity is notated using the common classification “XW-XX”. The number preceding the “W” (winter) rates the oil's flow (viscosity) at zero degrees Fahrenheit (-17.8 degrees Celsius). The lower the number, the less the oil thickens in cold weather.