Answer:
KAT
Explanation:
I believe this is what ur looking for
Answer:
V = 125.7m/min
Explanation:
Given:
L = 400 mm ≈ 0.4m
D = 150 mm ≈ 0.15m
T = 5 minutes
F = 0.30mm ≈ 0.0003m
To calculate the cutting speed, let's use the formula :

We are to find the speed, V. Let's make it the subject.

Substituting values we have:

V = 125.68 m/min ≈ 125.7 m/min
Therefore, V = 125.7m/min
Answer:
Explanation:
Work, U, is equal to the force times the distance:
U = F · r
Force needed to lift the weight, is equal to the weight: F = W = m · g
so:
U = m · g · r
= 20.4kg · 9.81
· 1.50m
= 35.316 
= 35.316 W
Answer:
The pressure reduces to 2.588 bars.
Explanation:
According to Bernoulli's theorem for ideal flow we have

Since the losses are neglected thus applying this theorm between upper and lower porion we have

Now by continuity equation we have

Applying the values in the Bernoulli's equation we get

Answer:
h = 287.1 m
Explanation:
the density of mercury \rho =13570 kg/m3
the atmospheric pressure at the top of the building is

the atmospheric pressure at bottom


we have also

1.18*9.81*h = (100.4 -97.08)*10^3
h = 287.1 m