1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IRISSAK [1]
3 years ago
15

In the braking test of a sports car, its velocity is reduced from 70 mi/h to zero in a distance of 180 ft with slipping impendin

g. The coefficient of kinetic friction is 80 percent of the coefficient of static friction.(b) the stopping distance forteh same initial velocity if the car skids. Ignore airresistance and rolling resistance.
Physics
1 answer:
Anettt [7]3 years ago
7 0

Answer:

<em>The stopping distance if the car skids is 225 ft</em>

Explanation:

<u>Friction</u>

It's a force that opposes movement and requires the interaction of two surfaces. If the interaction occurs from relative rest, then the friction force is greater than the case where the interactions occur from relative speed. The static coefficient is greater than the kinetic friction, and the relation is

\mu_k=0.8\mu_s

If the car needs 180 ft to stop with slipping impending (no relative speed between the tires and the road), we can find the distance needed to stop the car in skidding conditions, which we expect to be greater.

This indicates that the friction forces have the same relation

F_{rk}=0.8F_{rs}

Since the mass is the same:

m.a_{k}=0.8\cdot m.a_{s}

Simplifying

a_{k}=0.8\cdot a_{s}

Now we'll focus on the dynamic formulas. The acceleration can be computed from the initial speed vo, the final speed vf and the distance x:

\displaystyle a=\frac{v_f^2-v_o^2}{2x}

This relation stands for both accelerations, which happen to be decelerations:

\displaystyle a_k=\frac{v_f^2-v_o^2}{2x_k}

\displaystyle a_s=\frac{v_f^2-v_o^2}{2x_s}

Where xk and xs are the distances needed to stop the car in each case. Note that vf and vo are the same since the test is done with the same values for both. Knowing the relation between the accelerations, we can have the relationship between the distances

\displaystyle \frac{v_f^2-v_o^2}{2x_k}=0.8\cdot \frac{v_f^2-v_o^2}{2x_s}

Simplifying

\displaystyle x_k=\frac{x_s}{0.8}

Thus

\displaystyle x_k=\frac{180}{0.8}

x_k=225\ ft

You might be interested in
You move to Mars and as a momento from Earth take your Ma-maw's mercury barometer. You place it outside in the Martian atmospher
oksano4ka [1.4K]

Answer:

Explanation:

No, the reading is not expected to be accurate. This is because Relative to Earth, the air on Mars is extremely thin. The Martian atmosphere is primarily carbon dioxide with a much lower surface pressure, and Mars does not have oceans and an Earthlike hydrological cycle so latent heat release is not as important as it is for Earth.

8 0
3 years ago
A projectile is fired at an upward angle of 29.7° from the top of a 108-m-high cliff with a speed of 130-m/s. What will be its
german

Answer:

79.2 m/s

Explanation:

θ = angle at which projectile is launched = 29.7 deg

a = initial speed of launch = 130 m/s

Consider the motion along the vertical direction

v₀ = initial velocity along the vertical direction = a Sinθ = 130 Sin29.7 = 64.4 m/s

y = vertical displacement = - 108 m

a = acceleration = - 9.8 m/s²

v = final speed as it strikes the ground

Using the kinematics equation

v² = v₀² + 2 a y

v² = 64.4² + 2 (-9.8) (-108)

v = 79.2 m/s

5 0
3 years ago
A child is riding a merry-go-round, which has an instantaneous angular speed of 1.25 rad/s and an angular acceleration of 0.745
Elena L [17]

w = instantaneous angular speed = 1.25 rad/s

r = radius = 4.65 m

α = angular acceleration = 0.745 rad/s²

centripetal acceleration is given as

a_{c} = rw²

a_{c} = (4.65 ) (1.25)² = 7.27 m/s²

tangential acceleration is given as

a_{t} = rα

a_{t} =4.65 x 0.745 = 3.46 m/s²

angle is given as

\theta = tan^{-1}(\frac{a_{c}}{a_{t}})

\theta = tan^{-1}(\frac{7.27}{3.46})

\theta = 64.5 deg

5 0
4 years ago
The Jamaican bobsled team was moving at a velocity of 50 m/s, then they hit the brakes on their sled to decelerate at a uniform
atroni [7]

Answer:

The time it took the bobsled to come to rest is 10 s.

Explanation:

Given;

initial velocity of the bobsled, u = 50 m/s

deceleration of the bobsled, a = - 5 m/s²

distance traveled, s = 250 m

Apply the following kinematic equation to determine the time of motion of the bobsled;

s = ut + ¹/₂at²

250 = 50t + ¹/₂(-5)t²

250 = 50t - ⁵/₂t²

500 = 100t - 5t²

100 = 20t -t²

t² - 20t + 100 = 0

t² -10t - 10t + 100 = 0

t (t - 10) - 10(t - 10) = 0

(t - 10)(t - 10) = 0

t = 10 s

Therefore, the time it took the bobsled to come to rest is 10 s.

3 0
3 years ago
The wind at 5000 feet agl is southwesterly while the surface wind is southernly. this difference in direction is primarily due t
harkovskaia [24]
The friction between the wind and the surface
7 0
3 years ago
Other questions:
  • Web Spiders and Oscillations All spiders have special organs that make them exquisitely sensitive to vibrations. Web spiders det
    14·1 answer
  • Salmon often jump waterfalls to reach their
    5·1 answer
  • MY LAST ONE&lt;,Brainliest for best answer!
    13·2 answers
  • Please help.
    14·2 answers
  • Which type of change occurs when the bonds between atoms or molecules change and a new substance forms?
    15·2 answers
  • A rectangular loop (area = 0.15 m2) turns in a uniform magnetic field, B = 0.18 T. When the angle between the field and the norm
    9·1 answer
  • a 4 kg bowling ball videos rolling down a lane at bowling alley at 6 m/s when the ball strikes the pins is moving your 5.1 m/sho
    6·1 answer
  • A 36.75 kg boulder is rolling down a hill. If, at one moment, the boulder has a momentum of 241.5 kg. m/s, what is its
    14·1 answer
  • 15. Sandra decided to talk a walk at her neighborhood park. She walks 20 meters
    10·1 answer
  • If three forces F1 = 20N, 300NE, F2 = 50N along W, F3 = 40N 500NW act on a body. Find the resultant in magnitude and direction.​
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!