Answer:
water
is missing in above equation
hope it helps
Answer:
0.167m/s
Explanation:
According to law of conservation of momentum which States that the sum of momentum of bodies before collision is equal to the sum of the bodies after collision. The bodies move with a common velocity after collision.
Given momentum = Maas × velocity.
Momentum of glider A = 1kg×1m/s
Momentum of glider = 1kgm/s
Momentum of glider B = 5kg × 0m/s
The initial velocity of glider B is zero since it is at rest.
Momentum of glider B = 0kgm/s
Momentum of the bodies after collision = (mA+mB)v where;
mA and mB are the masses of the gliders
v is their common velocity after collision.
Momentum = (1+5)v
Momentum after collision = 6v
According to the law of conservation of momentum;
1kgm/s + 0kgm/s = 6v
1 =6v
V =1/6m/s
Their speed after collision will be 0.167m/s
Answer:
The height of the image will be "1.16 mm".
Explanation:
The given values are:
Object distance, u = 25 cm
Focal distance, f = 1.8 cm
On applying the lens formula, we get
⇒ 
On putting estimate values, we get
⇒ 
⇒ 
⇒ 
As a result, the image would be established mostly on right side and would be true even though v is positive.
By magnification,
and
⇒ 
⇒ 
⇒ 
Answer:
Explanation:
Given
radius of circular path
Position is given by
Differentiate 1 to angular velocity we get
Differentiate 2 to get angular acceleration
Net acceleration is the vector summation of tangential and centripetal force
It would be 12hz because it