The solution is 22 2(n+3)-4&6
Answer:
Waves with high frequencies have shorter wavelengths that work better than low frequency waves for successful echolocation.
Explanation:
To understand why high-frequency waves work better than low frequency waves for successful echolocation, first we have to understand the relation between frequency and wavelength.
The relation between frequency and wavelength is given by
λ = c/f
Where λ is wavelength, c is the speed of light and f is the frequency.
Since the speed of light is constant, the wavelength and frequency are inversely related.
So that means high frequency waves have shorter wavelengths, which is the very reason for the successful echolocation because waves having shorter wavelength are more likely to reach and hit the target and then reflect back to the dolphin to form an image of the object.
Thus, waves with high frequencies have shorter wavelengths that work better than low frequency waves for successful echolocation.
Answer: choices a and b
Explanation:
Telescope can be defined as am optical instrument which is designed to observe the distant objects clear and nearer. It comprises of arrangement of lenses which allow the rays of light to be collected. The collected light is focused and the image so produced is magnified in the form of an image. The telescopes are prepared and manufactured on mountains top as this will help in preventing the distortion of light obtain from the star due to the fluctuation of air mass in the atmosphere. The atmospheric distortion affects the resolution, and affects the vision. The atmospheric pressure is low at the mountain tops so it will help in better observation of the sky.
opaque glass does not allow light to pass through it.
Answer:Gravity
Explanation:Gravity is the force that pulls everything down instead of up because if we didn’t have gravity we would be floating upwards