Answer:
When she stretches her arms out,<em> B) her angular speed ω increases due to her moment of inertia decreasing</em>
Explanation:
The angular momentum of a rotating object is defined as the product of its moment of inertia and angular speed.
<em>L = I ω</em>
<em>where</em>
- <em>L is the angular momentum</em>
- <em>I is the moment of inertia</em>
- <em>ω is the angular speed</em>
<em />
According to the principle of conservation of angular momentum, if there is no external torque, angular momentum of the skater must remain conserved. If the initial and final moment of inertia is <em>I_i and I_f </em>while corresponding angular velocities are <em>ω_i and ω_f , </em>then the principle of conservation of angular momentum can be expressed as the following equation:
<em>(I_f) (ω_f) = (I_i) (ω_i)</em>
<em>ω_f / ω_i = I_i / I_f</em>
<em />
From the expression above, we can see that if the moment of inertia decreases, angular velocity would increase to conserve angular momentum of the skater.
Therefore, When she stretches her arms out,<em> her angular speed ω increases due to her moment of inertia decreasing.</em>
Answer:
31.831 Hz.
Explanation:
<u>Given:</u>
The vertical displacement of a wave is given in generalized form as

<em>where</em>,
- A = amplitude of the displacement of the wave.
- k = wave number of the wave =

= wavelength of the wave.- x = horizontal displacement of the wave.
= angular frequency of the wave =
.- f = frequency of the wave.
- t = time at which the displacement is calculated.
On comparing the generalized equation with the given equation of the displacement of the wave, we get,

therefore,

It is the required frequency of the wave.
the answer is D) The air in the aquarium is saturated
none of the other answers were realistic AND I took this before so I know the right answer.
Acceleration =
(change of speed) / (time for the change).
Change of speed = (speed at the end) - (speed at the beginning)
= ( zero ) - (40 m/s)
= -40 m/s .
Acceleration = (-40 m/s) / (5 seconds)
= -8 m/s² .
Tbh i don’t really know I’m just waiting for y’all to tell me the answer