IBR is the thermal decomposition of iodine(I) bromide to produce iodine and
bromine. This reaction takes place at a temperature of over 40,5°C and is written as:
<span>2IBr ⇄ I2 + Br2
</span>
Equilibrium is a state of dynamic balance where the ratio of the product and reactant concentrations is constant.<span> You can calculate the equilibrium concentration if you know the equilibrium constant Kc (Kc=I^2*Br^2/IBR^2) and the initial concentration for the reaction. The initial concentration is obtained from ICE Table.</span>
As we know that power is defined as rate of work done
so we will have

so in order to increase the power as per above formula we know that either we need to increase the work or we need to decrease the time to complete that work
So here the correct answer will be
increase the work being done or decrease the time in which the work is completed.
Answer:
speed of puck acc. to the radar gun = 138 km/h
speed of player = 15 km/h
since the player is in motion when he shoots, the speed of the puck will be the sum of the speed of the player and the speed at which he shot. so,
speed of puck = speed of player + speed of puck acc. to player
138 = 15 + speed of puck acc. to player
speed of puck acc. to player = 138 -15
speed of puck acc. to player = 123 km/h
Brainly this answer if you think it deserves it
Answer:
E = 1.04*10⁻¹ N/C
Explanation:
Assuming no other forces acting on the proton than the electric field, as this is uniform, we can calculate the acceleration of the proton, with the following kinematic equation:

As the proton is coming at rest after travelling 0.200 m to the right, vf = 0, and x = 0.200 m.
Replacing this values in the equation above, we can solve for a, as follows:

According to Newton´s 2nd Law, and applying the definition of an electric field, we can say the following:
F = mp*a = q*E
For a proton, we have the following values:
mp = 1.67*10⁻²⁷ kg
q = e = 1.6*10⁻¹⁹ C
So, we can solve for E (in magnitude) , as follows:

⇒ E = 1.04*10⁻¹ N/C