Answer:
W = 46 J
Explanation:
We need to find the angle between the two vectors Force vector and displacement vector.
First we will find the angle α of the force vector

Then we find the angle β of the displacement vector

With these two angles we can find the angle between the two vectors
∅ = α + β = 25.56 deg
The definition of work is given by the expression

The absolute value of F will be:

The absolute value of d will be:

Now we have:

Answer:
the weight of the object decreases when it is taken from the Earth to the Moon
Explanation:
The weight of an object is defined as the product of the mass of the object with the acceleration due to gravity of the Planet.

where,
W = weight of the object
m = mass of the object
g = acceleration due to gravity on the planet
The mass of an object remains constant everywhere in the universe. Therefore, the weight is directly proportional to the value of acceleration due to gravity.
The value of acceleration due to gravity on the Moon is lesser than its value on the Earth.
<u>Hence, the weight of the object decreases when it is taken from the Earth to the Moon </u>
FOR THAT YOU NEED TO UNDERSTAND WHAT ACTUALLY KINETIC ENERGY IS.
It is a form of energy which is caused due to motion, when the ball is kicked, it is send into motion thus it gains kinetic energy, how come energy came from ? as you have already read this ENERGY MASS CANT BE CREATED OR DESTROYED. In this scenario the energy is being transferred by the football player into the ball which appears as the kinetic energy of the ball... that's how it works
Answer:
λ = 65.6 pm
Explanation:
Given that
λo = 65 pm
The initial energy of the electron

Now by putting the values




Eo=19.06 KeV
Given that kinetic energy KE= 0.84 KeV
Therefore the final energy
E= Eo - KE
E = 19.06 - 0.84 KeV
E= 18.22 KeV
The wavelength λ can be find as



λ = 6.56 x 10⁻¹¹ m
λ = 65.6 pm