The motion of the ball on the vertical axis is an accelerated motion, with acceleration

The following relationship holds for an uniformly accelerated motion:

where S is the distance covered, vf the final velocity and vi the initial velocity.
If we take the moment the ball reaches the maximum height (let's call this height h), then at this point of the motion the vertical velocity is zero:

So we can rewrite the equation as

from which we can isolate h

(1)
Now let's assume that

is the initial velocity of the first ball. The second ball has an initial velocity that is twice the one of the first ball:

. So the maximum height of the second ball is

(2)
Which is 4 times the height we found in (1). Therefore, the maximum height of ball 2 is 4 times the maximum height of ball 1.
Answer:
μ=0.151
Explanation:
Given that
m= 3.5 Kg
d= 0.96 m
F= 22 N
v= 1.36 m/s
Lets take coefficient of kinetic friction = μ
Friction force Fr=μ m g
Lets take acceleration of block is a m/s²
F- Fr = m a
22 - μ x 3.5 x 10 = 3.5 a ( take g =10 m/s²)
a= 6.28 - 35μ m/s²
The final speed of the block is v
v= 1.36 m/s
We know that
v²= u²+ 2 a d
u= 0 m/s given that
1.36² = 2 x a x 0.96
a= 0.963 m/s²
a= 6.28 - 35μ m/s²
6.28 - 35μ = 0.963
μ=0.151
Pluto is the last planet discovered in our solar system.