Answer:
<em>Elevator That Is Moving Downwards At A Constant Speed Of 4.9 M/S. What Is The Magnitude Of The Net Force Acing On The Student?</em>
<em>This problem has been solved!</em>
<em>This problem has been solved!See the answer</em>
<em>This problem has been solved!See the answerA student weighs 1200N. They are standing in an elevator that is moving downwards at a constant speed of </em><em>4.9 m/s. What is the magnitude of the net force acing on the student?</em>
For a parallel circuit with two resistors, the total resistance is calculated from the expression:
1/R = 1/R1 + 1/R2
We are given the total resistance, R, which is 20 ohms and R2 which is 75 ohms. We calculate R1 as follows:
1/20 = 1/R1 + 1/75
1/R1 = 11/300
R1 = 27.27 ohms
Answer: The correct answer is option B.
Explanation:
Mass of the sled = 10 kg
Initial speed of the sled = 2 m/s
Kinetic energy of the sled =
Work done by the sled = 20 joules
The work done by the friction will be in opposite direction and equal to the magnitude of the work done of the sled that - 20 J.
Hence, correct answer is option B.
Answer:
W = 0
Explanation:
We are given with, a construction worker is carrying a load of 40 kg over his head and is walking at a constant velocity. He travels a distance of 50 m.
The work done by an object is given by :
F = ma
So,
m is mass
a is acceleration
d is displacement
The worker is moving with constant velocity, its acceleration will be 0. So, the work done by the worker is 0.