Answer:
5.571 sec
Explanation:
angular frequency = √ (k/m) = √ (49.3 / 5) = 3.14 rad/s
Period To = 2π / angular frequency
Period To = 2π/3.14 = 2 × 3.14 / 3.142 = 2.00 sec which you got
T measured by the observer = To / (√ (1 - (v²/c²))) = 2 / √( 1 - 0.871111) = 2 / 0.35901 = 5.571 sec
t=2.00/(1-√((2.80*10^8)^2/(3.00*10^8)^2))= should have been ( To / (√ (1 - (v²/c²))). where To = 2.00 sec
Strange as it may seem, the object would keep moving, in a straight line and at the same speed, until it came near another object. Its momentum and kinetic energy would never change. It might continue like that for a billion years or more.
Have a look at Newton's first law of motion.
Answer:
Well if it gets warmer the ice will weaken and if it gets hot enough will melt. Of course if the weather gets colder the ice will thicken.
Explanation:
Answer:
The bulb B glows brighter.
Explanation:
Given that,
A glows brightly and B glows dimly.
According to ohm's law,
Two light bulbs A and B are connected in series to a battery then the current will be same in both bulbs and the resistance is high of bulb A and low in bulb B.
If bulb A connect to a battery and bulb B connect to a same battery separately.
Then bulb B glows brighter because the resistance is high in bulb A so the current will be low.
The resistance is low in bulb B so the current will be high.
Hence, The bulb B glows brighter.
Answer:
The acceleration is 3.16x10¹⁷ m/s².
Explanation:
First, we need to find the magnitude of the Coulombs force (F):

<u>Where</u>:
K is the Coulomb constant = 9x10⁹ Nm²/C²
q₁ is the charge = 20x10⁻⁹ C
q₂ is the electron's charge = -1.6x10⁻¹⁹ C
d is the distance = 1.0 cm = 1.0x10⁻² m
Now, we can find the acceleration:

Therefore, the acceleration is 3.16x10¹⁷ m/s².
I hope it helps you!