The spring constant is 4 N/m
Explanation:
When a spring is stretched/compressed by the application of a force, the relationship between the magnitude of the force applied and the elongation of the spring is given by Hooke's law:

where
F is the magnitude of the spring applied
k is the spring constant
x is the elongation of the spring, relative to its equilibrium position
For the spring in this problem, we have:
F = 0.12 N (force applied)
x = 3 cm = 0.03 m (elongation of the spring)
Therefore, we can solve the formula for k to find the spring constant:

Learn more about forces:
brainly.com/question/8459017
brainly.com/question/11292757
brainly.com/question/12978926
#LearnwithBrainly
Answer: The speed at the first quarter checkpoint is 0.74 m/s. The speed at the second quarter checkpoint is 1.40 m/s. The speed at the third quarter checkpoint is 1.61 m/s. The speed at the finish line is 1.89 m/s.
Explanation: I did the assignment and got it correct :)
Answer:
Visible light has a shorter wavelength than radio waves
If the spaceship's Physicist happens to be hanging out of one side
of the ship, and he measures the speed of the photons as they pass
him and leave the ship, he'll see them passing him at 'c' ... the speed
of light.
When those photons pass somebody who happens to be in their
path, and he decides to measure their speed, he'll see them move
past him at 'c' ... the speed of light.
It doesn't matter whether the observer who measures them is
moving, or at what speed.
And it doesn't matter what source the photons come from, or
whether the source is moving, or at what speed.
And it doesn't matter what the photons' wavelength/frequency is ...
anything from radio to gamma rays.
The photons pass everybody at 'c' ... the speed of light.
Yes, I hear you. That can't be true. It's crazy.
Maybe it's crazy, but it's true.
Answer:
number 10 is the value of acceleration due to gravity.