The gravitational field strength is approximately equal to 10 N.
<u>Explanation:</u>
Gravitational field strength is the measure of gravitational force acting on any object placed on the surface of the planet. Generally, the mass of the object is considered as 1 kg.
So the gravitational field strength will be equal to the gravitational force acting on the object.
The formula for gravitational field strength is

Here g is the gravitational field strength, m is the mass of the object placed on the surface and F is the gravitational force acting on the object.
Since, the mass of any object placed on the surface of earth will be negligible compared to the mass of Earth, so the mass of the object is considered as 1 kg.
Then the g = F
And 
Here G is the gravitational constant, M is the mass of Earth and m is the mass of the object placed on the surface, while r is the radius of the Earth.


So, the gravitational field strength is approximately equal to 10 N.
Answer:
in left
Explanation:
Hope it will help
<em>p</em><em>l</em><em>e</em><em>a</em><em>s</em><em>e</em><em> </em><em>m</em><em>a</em><em>r</em><em>k</em><em> </em><em>a</em><em>s</em><em> </em><em>a</em><em> </em><em>b</em><em>r</em><em>a</em><em>i</em><em>n</em><em>l</em><em>i</em><em>s</em><em>t</em><em>s</em>
Answer:
it's zero
Explanation:
it is there is your answer
Answer:
The force that is exerted when a shopping cart is pushed is a type of push force, supplied by the muscles of the cart pusher's body.
The forces that causes a metal ball to move toward a magnet is a type of pull force that is as a result of the magnetic field forces.
Explanation:
Forces are divided into push forces that tends to accelerate a body away from the source of the force, and pull forces that accelerates the body towards the force source.
Examples of push forces includes pushing a cart, pushing a table, repulsion of two similar poles of a magnet etc. Examples of pull forces includes a attractive force between two dissimilar poles of a magnet, pulling a load by a rope, a dog pulling on a leash etc.
Answer:
a) ![(Qa*g*Vb)-(Qh*Vb*g)=(Qh*Vb*a)\\where \\g=gravity [m/s^2]\\a=acceleration [m/s^2]](https://tex.z-dn.net/?f=%28Qa%2Ag%2AVb%29-%28Qh%2AVb%2Ag%29%3D%28Qh%2AVb%2Aa%29%5C%5Cwhere%20%5C%5Cg%3Dgravity%20%5Bm%2Fs%5E2%5D%5C%5Ca%3Dacceleration%20%5Bm%2Fs%5E2%5D)
b) a = 19.61[m/s^2]
Explanation:
The total mass of the balloon is:
![massball=densityheli*volumeheli\\\\massball=0.41 [kg/m^3]*0.048[m^3]\\massball=0.01968[kg]\\\\](https://tex.z-dn.net/?f=massball%3Ddensityheli%2Avolumeheli%5C%5C%5C%5Cmassball%3D0.41%20%5Bkg%2Fm%5E3%5D%2A0.048%5Bm%5E3%5D%5C%5Cmassball%3D0.01968%5Bkg%5D%5C%5C%5C%5C)
The buoyancy force acting on the balloon is:
![Fb=densityair*gravity*volumeball\\Fb=1.23[kg/m^3]*9.81[m/s^2]*0.048[m^3]\\Fb=0.579[N]](https://tex.z-dn.net/?f=Fb%3Ddensityair%2Agravity%2Avolumeball%5C%5CFb%3D1.23%5Bkg%2Fm%5E3%5D%2A9.81%5Bm%2Fs%5E2%5D%2A0.048%5Bm%5E3%5D%5C%5CFb%3D0.579%5BN%5D)
Now we need to make a free body diagram where we can see the forces that are acting over the balloon and determinate the acceleration.
In the attached image we can see the free body diagram and the equation deducted by Newton's second law