Answer:
0.0000015
Step-by-step explanation:
Given:
The tens digit of a two digit number is 5 greater the units digit.
If you subtract double the reversed number from it, the result is a fourth of the original number.
To find:
The original number.
Solution:
Let n be the two digit number and x be the unit digit. Then tens digit is (x+5) and the original number is:
![n=(x+5)\times 10+x\times 1](https://tex.z-dn.net/?f=n%3D%28x%2B5%29%5Ctimes%2010%2Bx%5Ctimes%201)
![n=10x+50+x](https://tex.z-dn.net/?f=n%3D10x%2B50%2Bx)
![n=11x+50](https://tex.z-dn.net/?f=n%3D11x%2B50)
Reversed number is:
![x\times 10+(x+5)\times 1=10x+x+5](https://tex.z-dn.net/?f=x%5Ctimes%2010%2B%28x%2B5%29%5Ctimes%201%3D10x%2Bx%2B5)
![x\times 10+(x+5)\times 1=11x+5](https://tex.z-dn.net/?f=x%5Ctimes%2010%2B%28x%2B5%29%5Ctimes%201%3D11x%2B5)
If you subtract double the reversed number from it, the result is a fourth of the original number.
![11x+50-2(11x+5)=\dfrac{1}{4}(11x+50)](https://tex.z-dn.net/?f=11x%2B50-2%2811x%2B5%29%3D%5Cdfrac%7B1%7D%7B4%7D%2811x%2B50%29)
![11x+50-22x-10=\dfrac{1}{4}(11x+50)](https://tex.z-dn.net/?f=11x%2B50-22x-10%3D%5Cdfrac%7B1%7D%7B4%7D%2811x%2B50%29)
![40-11x=\dfrac{1}{4}(11x+50)](https://tex.z-dn.net/?f=40-11x%3D%5Cdfrac%7B1%7D%7B4%7D%2811x%2B50%29)
Multiply both sides by 4.
![160-44x=11x+50](https://tex.z-dn.net/?f=160-44x%3D11x%2B50)
![160-50=11x+44x](https://tex.z-dn.net/?f=160-50%3D11x%2B44x)
![110=55x](https://tex.z-dn.net/?f=110%3D55x)
Divide both sides by 55.
![\dfrac{110}{55}=x](https://tex.z-dn.net/?f=%5Cdfrac%7B110%7D%7B55%7D%3Dx)
![2=x](https://tex.z-dn.net/?f=2%3Dx)
The unit digit is 2. So, the tens digit is
.
Therefore, the original number is 72.
Answer:
Juan has 35(t) cookie dough orders.
Step-by-step explanation:
75(Overall) - 40(Rob's) = 35(Juan's)
Hope this helps you. :)
Answer:
Step-by-step explanation: