The reaction equation is:
<span>2CuO(s) + C(s) </span>→ <span>2Cu(s) + CO</span>₂<span>(g)
First, we determine the number of grams present in one ton of copper oxide. This is:
1 ton = 9.09 x 10</span>⁵ g
We convert this into moles by dividing by the molecular mass of copper oxide, which is:
9.09 x 10⁵ / 79.5 = 11,434 moles
Each mole of carbon reduces two moles of copper oxide, so the moles of carbon required are:
11,434 / 2 = 5,717 moles of Carbon required
The mass of carbon is then:
5,717 x 12 = 68,604 grams
The mass of coke is:
68,604 / 0.95 = 72,214 g
The mass of coke required is 7.22 x 10⁴ grams
Explanation: You cannot be convicted of a crime without evidence. You cannot be convicted of a state crime. You cannot be convicted of a federal crime. If there is no evidence against you, under the law, it simply is not possible for the prosecutor's office to obtain a conviction at trial. So, when you do have evidence it is really impossible to not get convicted unless the judge truly believes your side of the story and declares you not guilty.
I hope this helped :) If not i'm sorry!
Answer: 22 kJ amount of energy is released in the following reaction.
Explanation: There are two types of reaction on the basis of amount of heat absorbed or released.
1. Endothermic reactions: These are the type of reactions in which reactants absorb heat to form the products. The energy of the reactants is less than the energy of the products.
2. Exothermic reactions: These are the type of reactions in which heat is released from the chemical reactions. The energy of the products is less than the reactants.
Sign convention for
: This value is negative for exothermic reactions and positive for endothermic reactions.
For the given chemical reaction,
Energy of the products is less than the energy of the reactants, Hence, this reaction will be a type of exothermic reaction and energy will be released during this chemical change.
Amount of energy released = (350 - 372) kJ = -22kJ
Negative sign symbolizes the energy is being released. So, 22 kJ amount of energy is released in the following reaction.