Answer:
Explanation:
The energy of a photon emitted when the electron moves from the 3rd orbital to the 2nd orbital is exactly same as the energy of a photon absorbed when the electron moves from the 2nd orbital to the 3rd orbital
D represents ion-dipole forces that are stronger than the force C.
Explanation:
D represents the ion-dipole force.
C represents the H-bonding forces.
ion-dipole force is a force that is due to electrostatic attraction and has a dipole between an ion and a neutral molecule.
It is electrostatic in nature.
A hydrogen bond is the force between the hydrogen with the electro negative atom of one molecule, to electro negative atom of some other molecule. such as: O, F, N
Ion dipole force is stronger than the H-bonding.
Answer:
Attached below
Explanation:
Free energy of mixing = ΔGmix = Gf - Gi
attached below is the required derivation of the
<u>a) Molar Gibbs energy of mixing</u>
ΔGmix = Gf - Gi
hence : ΔGmix = ∩RT ( X1 In X1 + X2 In X2 + X3 In X3 + ------- )
<u>b) molar excess Gibbs energy of mixing</u>
Ni = chemical potential of gas
fi = Fugacity
N°i = Chemical potential of gas when Fugacity = 1
ΔG = RT In ( a2 / a1 )
Answer:
* 
* The solution is acidic since the pH is below 7.
Explanation:
Hello,
In this case, we can mathematically define the pH by:
![pH=-log([H_3O^+])](https://tex.z-dn.net/?f=pH%3D-log%28%5BH_3O%5E%2B%5D%29)
Thus, for the given hydronium concentration we simply compute the pH:

Thereby, we conclude the solution is acidic due to the fact that the pH is below 7 which is the neutral point and above it the solutions are basic.
Regards.
Answer:
A = -213.09°C
B = 15014.85 °C
C = -268.37°C
Explanation:
Given data:
Initial volume of gas = 5.00 L
Initial temperature = 0°C (273 K)
Final volume = 1100 mL, 280 L, 87.5 mL
Final temperature = ?
Solution:
Formula:
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Conversion of mL into L.
Final volume = 1100 mL/1000 = 1.1 L
Final volume = 87.5 mL/1000 = 0.0875 L
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
T₂ = V₂T₁ / V₁
T₂ = 1.1 L × 273 K / 5.00 L
T₂ = 300.3 L.K / 5.00 K
T₂ = 60.06 K
60.06 K - 273 = -213.09°C
2)
V₁/T₁ = V₂/T₂
T₂ = V₂T₁ / V₁
T₂ = 280 L × 273 K / 5.00 L
T₂ = 76440 L.K / 5.00 K
T₂ = 15288 K
15288 K - 273 = 15014.85 °C
3)
V₁/T₁ = V₂/T₂
T₂ = V₂T₁ / V₁
T₂ = 0.0875 L × 273 K / 5.00 L
T₂ = 23.8875 L.K / 5.00 K
T₂ = 4.78 K
4.78 K - 273 = -268.37°C