Answer:
Water molecules pull the sodium and chloride ions apart, breaking the ionic bond that held them together. After the salt compounds are pulled apart, the sodium and chloride atoms are surrounded by water molecules, as this diagram shows. Once this happens, the salt is dissolved, resulting in a homogeneous solution.
Both the increase in the boling point and the depression on the freezing point are colliative properties.
This is, they are proportional to the number of particles dissolved in the solvent, which is measured by the molality of the solution and the factor i (Van'f Hoff).
The answer to the question is that 1) the boling point of a solution of water and calcium chloride at standard pressure will be higher than the normal boiling point of pure water, and 2) the freezing point of a solution of water and calcium chloride at standard pressure will be lower than the normal freezing point of pure water.
Answer:
Group 1 (or IA)
Explanation:
If element X is a halogen, then it belongs to the group 17 (or VIIA, under a different notation).
For each extra unit of atomic number, the group number increases by 1. That means that the X+1 element would belong to the group 18 (or VIIIA). <em>The X+2 element would thus belong in the group 1 </em>(or IA) one period higher (higher as in numeric value, not as in position in the periodic table).
The full decimal is 2.59328...
When you round up the answer is 2.6 atoms of Li
Three factors that affect magma viscosity are temperature, composition, and presence of dissolved gases.