Answer:
V₂ = 15.3
Explanation:
Given data:
Initial volume = 12.0 L
Initial temperature = 20°C
Final temperature =100°C
Final volume = ?
Solution:
First of all we will convert the temperature into kelvin.
20°C + 273 = 293 K
100°C + 273 = 373 K
Formula:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
V₂ = V₁T₂/T₁
V₂ = 12.0 L × 373 K / 293 k
V₂ = 4476 L.K /293 k
V₂ = 15.3
V₂ = 1566 L.K / 298 K
V₂ = 5.3 L
Valence elections, electron affinity, electronegativity, atomic radius
The reaction involved in this problem is called the combustion reaction where a hydrocarbon reacts with oxygen to product carbon dioxide and water. The reaction of C2H5OH would be as follows:
C2H5OH + 3O2 = 2CO2 + 3H2O
To determine the number of molecules of CO2 that is formed, we need to determine the number of moles produced from the initial amount of C2H5OH and the relation from the reaction. Then we multiply avogadros number which is equal to 6.022x10^23 molecules per mole.
2.00 g C2H5OH ( 1 mol C2H5OH / 46.08 g C2H5OH ) ( 2 mol CO2 / 1 mol C2H5OH ) = 0.0868 mol CO2
0.0868 mol CO2 ( 6.022x10^23 molecules / mol ) = 5.23x10^22 molecules CO2
Answer:
History is the study of the past in all its forms. Philosophy of history examines the theoretical foundations of the practice, application, and social consequences of history and historiography. It is similar to other area studies – such as philosophy of science or philosophy of religion – in two respects.
Explanation: