Answer:
6.79 g of phosphine can be produced
Explanation:
The reaction is this:
3H₂ + 2P → 2PH₃
We have the mass of the two reactants, so let's find out the limiting reactant, so we can work with the equation. Firstly, we convert the mass to moles (mass / molar mass)
6.2 g / 30.97 g/mol = 0.200 moles of P
4g / 2 g/mol = 2 moles of H₂
Ratio is 3:2.
3 moles of hydrogen react with 2 moles of P
Then, 2 moles of H₂ would react with (2 . 2)/ 3 = 1.3 moles of P.
We have only 0.2 moles of P, so clearly the phosphorous is the limiting reactant.
Ratio is 2:2. So 2 moles of P can produce 2 moles of phosphine. Therefore, 0.2 moles of P must produce the same amount of phosphine.
Let's convert the moles to mass ( mol . molar mass)
0.2 mol . 33.97 g/mol = 6.79 g
The correct answers about rusting, air pollution and products of water with rock are:
Option A. oxidation
Option D. Pollutants mix with air and water to make acid rain.
Option B. clay minerals and calcium carbonate
<h3>What is rusting?</h3>
Rusting is the process by which a metal especially reacts with oxygen in the atmosphere and water vapor to form a hydrated oxide of the metal known as hydrated iron (iii) oxide. This is known as rust.
The process is an oxidation process; option A.
<h3>How does air pollution impact chemical weathering?</h3>
Air pollution is the presence of substances in air known as pollutants which makes the air impure.
Air pollution impact chemical weathering as the pollutants mix with air and water to make acid rain which weathers rocks; option D.
<h3>What products are produced when water reacts with sodium in rocks?</h3>
The reaction of water with sodium in rocks result in the formation of clay minerals and calcium carbonate also as limestone, marble or chalk; option B.
In conclusion, the presence of pollutants in air results in acid rain and hence rock weathering.
Learn more rock weathering at: brainly.com/question/2341950
#SPJ1
The bond dissociation energy of the Cl - Cl bond is -958 kJ mol^-1.
<h3>What is the dissociation enthalpy?</h3>
Given that;
H-H bond energy = 435 kJ mol^-1
H-Cl bond energy = 431 kJ mol^-1
ΔHfO of HCL(g) = -92kJ mol^-1
Bond dissociation enthalpy of the Cl-Cl bond = x
-92 = 435 + 431 + x
x = -92 - (435 + 431)
x = -958 kJ mol^-1
Learn More about dissociation enthalpy:brainly.com/question/9998007?
#SPJ1
Answer:
Coefficient = 1.58
Exponent = - 5
Explanation:
pH = 2.95
Molar concentration = 0.0796M
Ka = [H+]^2 / [HA]
Ka = [H+]^2 / 0.0796
Therefore ;
[H+] = 10^-2.95
[H+] = 0.0011220 = 1.122 × 10^-3
Ka = [H+] / molar concentration
Ka = [1.122 × 10^-3]^2 / 0.0796
Ka = (1.258884 × 10^-6) / 0.0796
Ka = 15.815 × 10^-6
Ka = 1.58 × 10^-5
Coefficient = 1.58
Exponent = - 5