Answer:
All the competitors will move with the same velocity.
Explanation:
Here, the situations for each competitor are identical. Thus, they will exert the same force and hence, their velocities at each instants will be identical.
Answer:
.
Explanation:
Let
denote the absolute temperature of this object.
Calculate the value of
before and after heating:
.
.
By the Stefan-Boltzmann Law, the energy that this object emits (over all frequencies) would be proportional to
.
Ratio between the absolute temperature of this object before and after heating:
.
Therefore, by the Stefan-Boltzmann Law, the ratio between the energy that this object emits before and after heating would be:
.
<span>At this distance, and with an orbital speed of 24.077 km/s, Mars takes 686.971 Earth days, the equivalent of 1.88 Earth years, to complete a orbit around the Sun. This eccentricity is one of the most pronounced in the Solar System, with only Mercury having a greater one (0.205).
686.971 rounds to 687
HOPE I HELPED!</span>
Answer: It's hard to say without characterizing the collision. But it will be either A if the collision is totally in-elastic, or B if the collision is totally elastic. It could be anywhere in between for partially elastic collisions.
Explanation:
momentum is conserved, so initial system momentum will be left to right.
The velocity of the center of mass is 50(5) / 550 = 0.4545... m/s
In an elastic collision, the lead ball will move off at twice that speed or 0.91 m/s to the right.
The steel ball will bounce back and move away at 0.91 - 5 = -4.1 m/s . The negative sign indicates the steel ball has reversed course and has negative momentum
In a totally in-elastic collision, both balls would move to the right at 0.45 m/s. The steel ball will still have positive momentum.