Answer:
The difference in the length of the bridge is 0.42 m.
Explanation:
Given that,
Length = 1000 m
Winter temperature = 0°C
Summer temperature = 40°C
Coefficient of thermal expansion 
We need to calculate the difference in the length of the bridge
Using formula of the difference in the length

Where,
= temperature difference
=Coefficient of thermal expansion
L= length
Put the value into the formula


Hence, The difference in the length of the bridge is 0.42 m.
Answer:
They are both forms of energy. One has to do with hearing and the other a little bit of light.
Explanation:
The horizontal force is m*v²/Lh, where m is the total mass. The vertical force is the total weight (233 + 840)N.
<span>Fx = [(233 + 840)/g]*v²/7.5 </span>
<span>v = 32.3*2*π*7.5/60 m/s = 25.37 m/s </span>
<span>The horizontal component of force from the cables is Th + Ti*sin40º and the vertical component of force from the cable is Ta*cos40º </span>
<span>Thh horizontal and vertical forces must balance each other. First the vertical components: </span>
<span>233 + 840 = Ti*cos40º </span>
<span>solve for Ti. (This is the answer to the part b) </span>
<span>Horizontally </span>
<span>[(233 + 840)/g]*v²/7.5 = Th + Ti*sin40º </span>
<span>Solve for Th </span>
<span>Th = [(233 + 840)/g]*v²/7.5 - Ti*sin40º </span>
<span>using v and Ti computed above.</span>
Potential energy decreases and kinetic energy increases.
Potential energy is related to the height, since the wagon is going downhill, height decreases and potential energy decreases.
Kinetic energy is related to the speed, since the wagon is speeding up, kinetic energy increases.
Answer:
<h2>Gravity :</h2><h3>the force that attracts a body towards the centre of the earth, or towards any other physical body having mass.</h3>
<h2>Solar day</h2><h3>A solar day is the time it takes for the Earth to rotate about its axis so that the Sun appears in the same position in the sky.</h3><h2> or</h2><h3>It is the time between successive meridian transits of the sun at a particular place.</h3>