Answer:
A. 1350
You multiply 18.21HNO3* 1mol MgN2O6 * 148.30MgN2O6
Then divide it by the 2mol HNO3 to get 1350
To solve this we assume that the hydrogen gas is an
ideal gas. Then, we can use the ideal gas equation which is expressed as PV =
nRT. At a constant pressure and number of moles of the gas the ratio T/V is
equal to some constant. At another set of condition of temperature, the
constant is still the same. Calculations are as follows:
T1 / V1 = T2 / V2
V2 = T2 x V1 / T1
V2 = (100 + 273.15) K x 2.50 L / (-196 + 273.15) K
<span>V2 = 12.09 L</span>
Therefore, the volume would increase to 12.09 L as the temperature is increased to 100 degrees Celsius.
<span />