Answer and explanation:
The <em>Animalia</em> Kingdom is defined according to its main characteristics, which are common to all animals: eukaryotic (their cells have defined nuclei), multicellular and heterotrophic organisms, which obtain their food by ingesting nutrients from the environment (with the exception of some endoparasites, which are nourished by absorbing nutrients from host fluids).
In addition, living beings in the animal kingdom begin their development from an egg cell or zygote, which arises from the fertilization of the egg by the sperm.
Thus, sexual reproduction is always present in the animals' life cycles. However, this does not mean that asexual reproduction does not happen, it occurs and is very important in some groups.
<span>Mg = 24.305 g/mol
O = 15.9994 g/mol</span>
Answer:
Resonance hybrid: A weighted average of all significant resonance contributors depicting the true electronic structure of a molecule.
Explanation:
Translation: Híbrido de ressonância: uma média ponderada de todos os contribuintes de ressonância significativos, representando a verdadeira estrutura eletrônica de uma molécula.
Answer:
option c
Explanation:
ffuunkie. tfnhc dhrhrjebrjeieie
Answer:
The reaction quotient (Q) before the reaction is 0.32
Explanation:
Being the reaction:
aA + bB ⇔ cC + dD
![Q=\frac{[C]^{c} *[D]^{d} }{[A]^{a}*[B]^{b} }](https://tex.z-dn.net/?f=Q%3D%5Cfrac%7B%5BC%5D%5E%7Bc%7D%20%2A%5BD%5D%5E%7Bd%7D%20%7D%7B%5BA%5D%5E%7Ba%7D%2A%5BB%5D%5E%7Bb%7D%20%20%7D)
where Q is the so-called reaction quotient and the concentrations expressed in it are not those of the equilibrium but those of the different reagents and products at a certain instant of the reaction.
The concentration will be calculated by:

You know the reaction:
PCl₅ (g) ⇌ PCl₃(g) + Cl₂(g).
So:
![Q=\frac{[PCl_{3} ] *[Cl_{2} ] }{[PCl_{5} ]}](https://tex.z-dn.net/?f=Q%3D%5Cfrac%7B%5BPCl_%7B3%7D%20%5D%20%2A%5BCl_%7B2%7D%20%5D%20%7D%7B%5BPCl_%7B5%7D%20%5D%7D)
The concentrations are:
- [PCl₃]=

- [Cl₂]=

- [PCl₅]=

Replacing:

Solving:
Q= 0.32
<u><em>The reaction quotient (Q) before the reaction is 0.32</em></u>