The answer is a rem sleep
You got it right on the top 3
Answer:
How hot or cold you feel depends on the rate at which your body is losing heat to the environment
Water on your skin acts pretty much like sweat. Water is more thermally conductive than air; therefore, the skin loses its heat to it much faster than it would to air.
Also, because water evaporates, it carries heat away from the skin and this increases the rate at which the skin loses its heat. The faster heat loss from the skin to water is what makes us feel cold when we are wet. But of course, the temperature of water has to be lower than the skin for this to occur, which is usually the case.
The density of silver is ρ = 10500 kg/m³ approximately.
Given:
m = 1.70 kg, the mass of silver
t = 3.0 x 10⁻⁷ m, the thickness of the sheet
Let A be the area.
Then, by definition,
m = (t*A)*ρ
Therefore
A = m/(t*ρ)
= (1.7 kg)/ [(3.0 x 10⁻⁷ m)*(10500 kg/m³)]
= 539.7 m²
Answer: 539.7 m²
Answer:
B) Kinetic energy increases, potential energy decreases
Explanation:
In a given system, when a body is at rest, v =0m/s, the kinetic energy is at zero while the potential energy is at maximum. However, when a body is in motion with a velocity = v, the potential energy is at zero while the kinetic energy is at maximum.
Before this happen, the a body at rest (P.E = max) is set on motion, the kinetic energy gradually increases till it converts all the potential energy in the system to kinetic energy and then reverses back when the body goes to rest again.
In this case, before the batter hits the ball, the kinetic energy was at zero while the potential energy was at maximum. However, when he hits the ball and sets it into motion with a velocity V, the potential energy converts to kinetic energy and moves the ball with that energy till it has expanded it and comes to rest.
Potential Energy → Kinetic Energy → Potential Energy.
That's how the system keeps changing.