Its a tightly-packed particles gain energy, allowing them to move more freely.
Impulse = Force * times and also Impulse = change in momentum.
Given that the mass does not change, change if momentum = mass * (final velocity - initial velocity)
Given that you know mass and initial velocity (which is the velicity before the cart hits the wall) you need the final velocity (which is the velocity after the cart hits the wall).
Answer: the velocity of the cart after it hits the wall.
Answer:
Use equation for kinetic energy: Ek=mV²/2
m=700 kg
V=10m/s
Ek=700kg*100m²7s²/2
Ek=35000 J=35kJ
Explanation:
Hope this helps you
Do mark me as brainliest
Answer:
1340.2MW
Explanation:
Hi!
To solve this problem follow the steps below!
1 finds the maximum maximum power, using the hydraulic power equation which is the product of the flow rate by height by the specific weight of fluid
W=αhQ
α=specific weight for water =9.81KN/m^3
h=height=220m
Q=flow=690m^3/s
W=(690)(220)(9.81)=1489158Kw=1489.16MW
2. Taking into account that the generator has a 90% efficiency, Find the real power by multiplying the ideal power by the efficiency of the electric generator
Wr=(0.9)(1489.16MW)=1340.2MW
the maximum possible electric power output is 1340.2MW
Answer with Explanation:
We are given that
Diameter of fighter plane=2.3 m
Radius=
a.We have to find the angular velocity in radians per second if it spins=1200 rev/min
Frequency=
1 minute=60 seconds
Angular velocity=
Angular velocity=
b.We have to find the linear speed of its tip at this angular velocity if the plane is stationary on the tarmac.

c.Centripetal acceleration=
Centripetal acceleration==