Those two units can be compared to a 'mile per hour' and a 'mile per hour - hour'.
One is a rate. The other is a quantity, after maintaining a rate for some time.
-- 'Joule' is a unit of energy. It's the amount of work (energy) you do
when you push with a force of 1 newton though a distance of 1 meter.
Lifting 10 pound of beans 3 feet off the floor takes about 40.7 joules of energy.
-- 'Watt' is a <u><em>rate</em></u> of using energy . . . 1 joule per second.
If you lift 10 pounds 3 feet off the floor in 1 second, your <em>power</em> is 40.7 watts.
-- 'Watt-second' is the amount of energy used in one second,
at the rate of 1 joule per second . . . 1 joule.
-- 'Watt-hour' is the amount of energy used in one hour,
at the rate of 1 joule per second . . . 3,600 joules.
-- 'Kilowatt' is a bigger <em>rate</em> of using energy . . . 1,000 joules per second.
-- 'Kilowatt - second' is the amount of energy used in one second,
at the rate of 1,000 joules per second . . . 1,000 joules .
-- 'Kilowatt - hour' is the amount of energy used in one hour,
at the rate of 1,000 joules per second . . . 3,600,000 joules .
Depending on where you live, 3,600,000 joules of energy bought
from the electric company costs something between 5¢ and 25¢.
Answer:
The answer is option A.
You speed up 8 m/s every second
Hope this helps you
Answer:
6.21 m/s
Explanation:
Using work energy equation then

where d is displacement from initial to final position, v is velocity and subscripts a and b are position A and B respectively, m is mass of collar, g is acceleration due to gravity
Substituting 1 Kg for m, 0.4m for h,
as 0, 9.81 for g then

Answer:
3.43 m/s^2
Explanation:
Force is equal to mass times acceleration. (F=ma). You can use inverse operations to get the formula for acceleration, which is acceleration is equal to force divided by mass. (a=F/m). Since there are two forces here, the force friction (55 N), and the force applied (175 N), we must solve for the net force. To solve for the net force, you take the applied force (175 N) and subtract the frictional force from it (55 N). Thus, the net force is 120 N. With this done, we can now solve for our acceleration.
Using the equation for acceleration, we take the force and divide it by mass.
120/35
Answer: 3.43* m/s^2**
*Note: This is rounded to the nearest hundredth, the full answer is: 3.42857143
**Note: In case you're confused, this is meters per second squared.