Answer:
0.053moles
Explanation:
Hello,
To calculate the number of moles of gas remaining in his after he exhale, we'll have to use Avogadro's law which states that the volume of a given mass of gas is directly proportional to its number of moles provided that temperature and pressure are kept constant. Mathematically,
V = kN, k = V / N
V1 / N1 = V2 / N2= V3 / N3 = Vx / Nx
V1 = 1.7L
N1 = 0.070mol
V2 = 1.3L
N2 = ?
From the above equation,
V1 / N1 = V2 / N2
Make N2 the subject of formula
N2 = (N1 × V2) / V1
N2 = (0.07 × 1.3) / 1.7
N2 = 0.053mol
The number of moles of gas in his lungs when he exhale is 0.053 moles
Whenever the fuel is being used up, a star explodes and the energy leakage from a star's core ceases.
Explanation:
The dying star expands in the "Red Giant," before even the inevitable collapse starts, due to nuclear reactions just outside of the core.
It becomes a white dwarf star when the star has almost the same density as the Sun. If it's much larger, a supernova explosion could take place and leave a neutron star away. However, if it is very large–at least three times the Sun's mass–the crumbling core of the star, nothing will ever stop it from crumbling. The star is imploding into a black hole, an endless gravitational loop in space.
o advance counterterrorism efforts in other countries
Answer:
B) Cations lose electrons having a charge of positive.
Explanation:
Hello there!
In this case, it is widely known that ions are classified as positive cations and negative anions, since the former is produced when a metal loses electrons and the latter when a nonmetal gains electrons; in such a way, the correct choice is:
B) Cations lose electrons having a charge of positive.
Best regards!
Answer:
The reaction must be spontaneous, the disorder of the system increases.
Explanation:
By the Second Law of Thermodynamics, a positive change in entropy is due to a net input heat, and entropy is a measure of the grade of disorder within the system. The net input heat means that resultant goes to the system from the surroundings.
By the First Law of Thermodynamics, a net input heat is due to a positive change in enthalpy.
The reaction is endothermic and spontaneous (since change in entropy is positive).