The bouncy ball experiences the greater momentum change.
To understand why, you need to remember that momentum is actually
a vector quantity ... it has a size AND it has a direction too.
The putty and the ball have the same mass, and you throw them
with the same speed. So, on the way from your hand to the wall,
they both have the same momentum.
Call it " M in the direction toward the wall ".
After they both hit the wall:
-- The putty has zero momentum.
Its momentum changed by an amount of M .
-- The ball has momentum of " M in the direction away from the wall ".
Its momentum changed by an amount of 2M .
Answer:
Vf= 3.435 m/s
Explanation:
Given:
Initial velocity Vi =0 m/s (starting from Rest position)
θ = 37⁰
Distance S = 1 m
To find: Final Velocity Vf=?
fist we have to find the down slope net acceleration a = g sin θ
a= 9.81 sin 37⁰ = 5.9 m/s²
By 3rd equation of motion
2 a S= Vf² - Vi²
Vf = Square root ( 2 × 5.9 m/s² × 1 + 0 m/s)
Vf = Square root (11.8)
Vf= 3.435 m/s
This is a diagram from above, the air resistance is oppose to movement, the bird is moving forward given its force is bigger.
80 because if you add 50 +30 =80 so yea that why I pick 80
heat engine that uses work to move heat
mark brainliest :)