Answer : The correct option is, (d) 
Explanation :
In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.


where,
= specific heat of copper = 
= specific heat of water = 
= mass of copper = 120 g
= mass of water = 300 g
= final temperature of mixture = 
= initial temperature of copper = ?
= initial temperature of water =
Now put all the given values in the above formula, we get:


Therefore, the temperature of the kiln was, 
The loops must the coil have to generate a maximum emf of 2500 will be 439.
<h3 /><h3>What is the faraday law of electromagnetic induction?</h3>
According to Faraday's law of electromagnetic induction, the rate of change of magnetic flux linked with the coil is responsible for generating emf in the coil resulting in the flow of amount of current.
Given data;
Area,A = 0.239 m²
Angular velocity,ω=373 rad/sec
Magnetic field,B=0.0639 T
Maximum emf,E= 2500V
The formula for the maximum induced voltage is;
E{max} = N × B × A × ω
2500 = N × 0.639 × 0.0239 × 373
N = 438.66
N = 439 \ turns
Hence, loops must the coil have to generate a maximum emf of 2500 will be 439.
To learn more about the faraday law of electromagnetic induction refer to;
brainly.com/question/26334813
#SPJ1
Between 2 weeks and a month
An ideal gas is a theoretical gas composed of a set of point particles with random displacement, which do not interact with each other. The ideal gas concept is useful because it behaves according to the ideal gas law, a simplified equation of state, which can be analyzed using statistical mechanics.
The equation of state of a classical ideal gas is given by:

Where:
P = pressure
V = Volume
n = amount of substance
T = Temperature
R = Ideal gas constant