Answer:
<em>The comoving distance and the proper distance scale</em>
<em></em>
Explanation:
The comoving distance scale removes the effects of the expansion of the universe, which leaves us with a distance that does not change in time due to the expansion of space (since space is constantly expanding). The comoving distance and proper distance are defined to be equal at the present time; therefore, the ratio of proper distance to comoving distance now is 1. The scale factor is sometimes not equal to 1. The distance between masses in the universe may change due to other, local factors like the motion of a galaxy within a cluster. Finally, we note that the expansion of the Universe results in the proper distance changing, but the comoving distance is unchanged by an expanding universe.
What diagram? There isn’t one
Answer:
θ=142.9°
Explanation:
d=1 *r
angle ϕ= 37.1°
the line connecting pebble and target should be tangent to a circle so
cos(180-ϕ-θ)=
=
∴ θ=180-ϕ-
θ= 180-37.1-0
θ=142.9°
Answer:
Kinetic energy would increase by a factor of 4 where as momentum would increase by a factor of 2.
Explanation:
Kinetic Energy is given by 0.5*mass*velocity^2. Kinetic Energy is proportional to Velocity^2.
Momentum is given by mass*velocity. Momentum is proportional to Velocity.
If the velocity of an object is doubled, Kinetic energy would increase by a factor of 2^2 i.e 4 times. Momentum would increase by a factor of 2.