Answer:
Clyde will provide greater impulse
Explanation:
We have given that Al exerts a force of 200 N for 5 sec
We know that impulse is given by, impulse = force ×time = 200×5 =1000 N-s
Bill exerts a force of 500 N for 2 sec
So impulse = 500×2 = 1000 N-s
Now the force exerted by Clyde 300 N for 4 sec
So impulse = 300×4 = 1200 N-s
From above calculation we can see that Clyde provide greater impulse than any other
Answer:
c. Time period remains the same in all.
Explanation:
In order to answer this question, we need to analyze the parameters, upon which the time period of a pendulum depends. We know that the time of a pendulum is given by the following formula:
T = 2π√(L/g)
where,
T = Time period
L = Length of pendulum
g = acceleration due to gravity
The formula clearly shows that the time period of the pendulum depends only upon the length of pendulum and value of g. And the time period of a pendulum does not depend upon the mass of the bob. Hence, the time period for each of the three pendulums will remain same. So, the correct option will be:
<u>c. Time period remains the same in all.</u>
The car will gain new momentum if it's velocity is doubled or tripled.
Answer:
3/7 ω
Explanation:
Initial momentum = final momentum
I(-ω) + (2I)(3ω) + (4I)(-ω/2) = (I + 2I + 4I) ωnet
-Iω + 6Iω - 2Iω = 7I ωnet
3Iω = 7I ωnet
ωnet = 3/7 ω
The final angular velocity will be 3/7 ω counterclockwise.