Answer:
The change in momentum for the bug and the car will be equal, impulses will be equal in opposite directions and the bug will have a greater acceleration compared to the car, because it has a smaller mass.
Explanation:
Hope this helps..
m₁ = 2.3 kg <span>
θ₁ = 70° </span><span>
θ₂ = 17° </span><span>
g = 9.8 m/s²
->The component of the gravitational force on m₁ that is parallel down the incline is: </span><span>
F₁ = m₁ × g × sin(θ₁) </span><span>
F₁ = (2.3
kg) × (9.8 m/s²) × sin(70°) = 21.18 N </span><span>
->The component of the gravitational force on m₂ that is parallel down the incline is: </span><span>
F₂ = m₂ × g × sin(θ₂) </span><span>
F₂ = m₂ × (9.8 m/s²) × sin(70°) = m₂ × (2.86 m/s²) </span><span>
Then the total mass of the system is:
m = m₁ + m₂ </span><span>
m = (2.3 kg) + m₂ </span><span>
If it is given that m₂ slides down the incline, then F₂ must be bigger than F₁, </span><span>
and so the net force on the system must be:
F = m₂×(2.86
m/s²) - (21.18 N) </span><span>
Using Newton's second law, we know that
F = m × a
So if we want the acceleration to be 0.64 m/s², then
m₂×(2.86
m/s²) - (21.18 N) = [(2.3 kg) + m₂] ×
(0.64 m/s²) </span><span>
m₂×(2.86
m/s²) - (21.18 N) = (1.47 N) + m₂×(0.64
m/s²) </span><span>
m₂×(2.22
m/s²) = (22.65 N) </span><span>
m₂<span> = 10.2
kg</span></span>
The two displacement functions are
x₁ = 4t
x₂ = -161 + 48t - 4t²
where
x₁, x₂ are in meters
t is time, s
The distance between the two objects is
x = x₁ - x₂
= 4t + 161 - 48t + 4t²
x = 4t² - 44t + 161
Write this equation in the standard form for a parabola.
x = 4[t² - 11t] + 161
= 4[ (t - 5.5)² - 5.5² ] + 161
x = 4(t-5)² + 40
Ths is a parabola that faces up and has its vertex (lowest point) at (5, 40).
Therefore the closest approach of the two objects is 40 m.
The graph of x versus t confirms the result.
Answer: The distance of the closest approach is 40 m.
Answer:The correct order is
γ-rays > x-rays> red light > infrared > radio
Explanation:
In the electromagnetic spectrum we have the following electromagnetic radiation Radio waves, infrared radiation, visible light, ultraviolet light, X-ray and gamma rays. Gamma rays have the highest frequency and radio waves the lowest. From the formula;
E=hf, where;
E is energy
h is Planck constant
f is frequency
We can see that the energy of these radiation depends on the magnitude of their frequency. Hence Gamma ray with highest frequency will have the highest energy and radio waves the lowest energy. Red light however is found at the lower end of the visible light spectrum . the correct order is;
γ-rays > x-rays> red light > infrared > radio
The equivalent resistance of n resistors connected in parallel is given by

(1)
In our problem, the resulting resistance of the 5 pieces connected in parallel is

, and since the 5 pieces are identical, their resistance R is identical, so we can rewrite (1) as

From which we find

.
So, each piece of wire has a resistance of

. Before the wire was cut, the five pieces were connected as they were in series. The equivalent resistance of a series of n resistors is given by

So if we apply it at our case, we have

therefore, the resistance of the original wire was

.