1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex_Xolod [135]
3 years ago
8

A reasonable estimate of the moment of inertia of an ice skater spinning with her arms at her sides can be made by modeling most

of her body as a uniform cylinder. Suppose the skater has a mass of 64 kg . One eighth of that mass is in her arms, which are 60 cm long and 20 cm from the vertical axis about which she rotates. The rest of her mass is approximately in the form of a 20-cm-radius cylinder.
A) Estimate the skater's moment of inertia to two significant figures.
B) If she were to hold her arms outward, rather than at her sides, would her moment of inertia increase, decrease, or remain unchanged?
Physics
1 answer:
garik1379 [7]3 years ago
3 0

Answer:

a)  I = 1.44 kg m², b)  I = 3.18 kg m² ,  The moment of inertia increases

Explanation:

The moment of inertia of a body is a scalar, additive quantity, so we can add the moment of inertia of each part, if everything revolves around the same axis

The moment of inertia of a cylinder is

        I = ½ m r²

The moment of total inertia is

         I = I_body + 2 I_arm

         I = ½ M r² + 2 m_arm r²

The most body without arms is

         M = M - 1/8 M

         M = 64 - 1/8 64 = 64 (1-1 / 8)

         M = 56 kg

The mass of the arms is

         m = 8 kg

Each arm has a mass of m_arm = 4 kg

Calculate

a) The moment of inertia with the arms attached to the body

        I = ½ 56 0.2² + 8 0.2²

       I = 1.44 kg m²

b) With the arms the moment of inertia changes

     For the arms we use the parallel axes theorem

              I_arm = I_{cm} + m d²

Let's approach the arm with a thin stick

             I_{cm} = 1/12 m L²

The distance is

              d = L / 2 + 0.20

              d = 0.6 / 2 + 0.2

              d = 0.50 m

 

            I = ½ M r² + (1/12 m L² +  2 m_arm d²)

            I = ½ 56 0.2² + (1/12 * 8 0.3² +2 4 0.5²)

            I = 1.12 + (0.06 +2)

            I = 3.18 kg m²

The moment of inertia increases

You might be interested in
How much work is done in holding a 20 N sack of potatoes while waiting in line at the
Yuki888 [10]

Answer: A

Explanation:

honestly, it sounded the best

8 0
2 years ago
In an experiment, a variable, position-dependent force F(x)F(x) is exerted on a block of mass 1.0kg1.0kg that is moving on a hor
leonid [27]

Answer:

The function F(x) for 0 < x < 5, the block's initial velocity, and the value of F(f).

(C) is correct option.

Explanation:

Given that,

Mass of block = 1.0 kg

Dependent force = F(x)

Frictional force = F(f)

Suppose, the following information would students need to test the hypothesis,

(A) The function F(x) for 0 < x < 5 and the value of F(f).

(B) The function a(t) for the time interval of travel and the value of F(f).

(C) The function F(x) for 0 < x < 5, the block's initial velocity, and the value of F(f).

(D) The function a(t) for the time interval of travel, the time it takes the block to move 5 m, and the value of F(f).

(E) The block's initial velocity, the time it takes the block to move 5 m, and the value of F(f).

We know that,

The work done by a force is given by,

W=\int_{x_{0}}^{x_{f}}{F(x)\ dx}.....(I)

Where, F(x) = net force

We know, the net force is the sum of forces.

So, \sum{F}=ma

According to question,

We have two forces F(x) and F(f)

So, the sum of these forces are

F(x)+(-F(f))=ma

Here, frictional force is negative because F(f) acts against the F(x)

Now put the value in equation (I)

W=\int_{x_{0}}^{x_{f}}{(F(x)-F(f))dx}

We need to find the value of \int_{x_{0}}^{x_{f}}{(F(x)-F(f))dx}

Using newton's second law

\int_{x_{0}}^{x_{f}}{(F(x)-F(f))dx}=\int_{x_{0}}^{x_{f}}{ma\ dx}...(II)

We know that,

Acceleration is rate of change of velocity.

a=\dfrac{dv}{dt}

Put the value of a in equation (II)

\int_{x_{0}}^{x_{f}}{(F(x)-F(f))dx}=\int_{x_{0}}^{x_{f}}{m\dfrac{dv}{dt}dx}

\int_{x_{0}}^{x_{f}}{(F(x)-F(f))dx}=\int_{v_{0}}^{v_{f}}{mv\ dv}

\int_{x_{0}}^{x_{f}}{(F(x)-F(f))dx}=\dfrac{mv_{f}^2}{2}+\dfrac{mv_{0}^2}{2}

Now, the work done by the net force on the block is,

W=\dfrac{mv_{f}^2}{2}+\dfrac{mv_{0}^2}{2}

The work done by the net force on the block is equal to the change in kinetic energy of the block.

Hence, The function F(x) for 0 < x < 5, the block's initial velocity, and the value of F(f).

(C) is correct option.

7 0
2 years ago
A hot drink in a room is at a temperature of 20 C
IRISSAK [1]

Answer: the drink cooled down to the same temperature as the room it was in.

Explanation: due to the change and temperature of the room, it cause the heat particles to exchange, causing it cool

8 0
3 years ago
Space debris left from old satellites and their launchers is becoming a hazard to other satellites. (a) Calculate the speed of a
Pie

Answer:

Part a)

v = 7407.1 m/s

Part b)

v_{rel} = 1.05 \times 10^4 m/s

Explanation:

Part a)

As we know that orbital velocity at certain height from the surface of Earth is given as

v = \sqrt{\frac{GM}{R+h}}

here we know that

M = 5.98 \times 10^{24} kg

R = 6.37 \times 10^6 m

h = 900 km = 9.0 \times 10^5 m

now we have

v = \sqrt{\frac{(6.67 \times 10^{-11})(5.98 \times 10^{24})}{6.37 \times 10^6 + 9.0 \times 10^5}}

v = 7407.1 m/s

Part b)

When a loose rivet is moving in same orbit but at 90 degree with the previous orbit path then in that case the relative speed of the rivet with respect to the satellite is given as

v_{rel} = \sqrt{2} v

v_{rel} = 1.05 \times 10^4 m/s

6 0
3 years ago
What is the weight of a 48 kg girl on Earth? Rounded to the nearest whole number
Levart [38]

Answer:

471 N

Explanation:

Weight is just another word for the force of gravity.

​Weight is a force that acts at all times on all objects near Earth. The Earth pulls on all objects with a force of gravity downward toward the center of the Earth (g-9.81 m/s2)

so we can simply say

weight =mass * gravitaitonal acceleraition

           = 48 * 9.81

            =470.88 N

            = 471 N

6 0
3 years ago
Read 2 more answers
Other questions:
  • Starting the moon's cycle with the new moon phase, what phase will it be in after about a week?
    8·1 answer
  • A golf ball is rolling in the grass. What must happen to stop the ball from continuing to roll?
    6·1 answer
  • How do Swati and Banks adjust their body position during a skydiving jump so they can fall at the same rate?
    13·1 answer
  • How do you think car makers can design cars to limit cell phone distractions?
    12·1 answer
  • What is the best way to describe the rate of motion of an object that changes speed several times over a period of time is to ca
    7·1 answer
  • Space vehicles traveling through Earth's radiation belts can intercept a significant number of electrons. The resulting charge b
    11·1 answer
  • When momentum is conserved it is called _____. (multiple choice)
    12·1 answer
  • A car’s velocity changes from 35 m/s to stopped in 13 seconds. Calculate<br> acceleration.
    6·1 answer
  • Two risks of exposure to High levels of UV radiation
    10·2 answers
  • What is the density of a 14.4 g of chromium in a rectangle with a volume of 2 cm3?​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!