Answer:
37.1°C.
Explanation:
- Firstly, we need to calculate the amount of heat (Q) released through this reaction:
<em>∵ ΔHsoln = Q/n</em>
no. of moles (n) of NaOH = mass/molar mass = (2.5 g)/(40 g/mol) = 0.0625 mol.
<em>The negative sign of ΔHsoln indicates that the reaction is exothermic.</em>
∴ Q = (n)(ΔHsoln) = (0.0625 mol)(44.51 kJ/mol) = 2.78 kJ.
Q = m.c.ΔT,
where, Q is the amount of heat released to water (Q = 2781.87 J).
m is the mass of water (m = 55.0 g, suppose density of water = 1.0 g/mL).
c is the specific heat capacity of water (c = 4.18 J/g.°C).
ΔT is the difference in T (ΔT = final temperature - initial temperature = final temperature - 25°C).
∴ (2781.87 J) = (55.0 g)(4.18 J/g.°C)(final temperature - 25°C)
∴ (final temperature - 25°C) = (2781.87 J)/(55.0 g)(4.18 J/g.°C) = 12.1.
<em>∴ final temperature = 25°C + 12.1 = 37.1°C.</em>
The answer is (3)Ne. Usually, the elements belongs to group 18 all have completely filled valence electron shell. Among the four elements carbon, vanadium, neon and antimony, only neon belongs to group 18.
Data:
weight of water before heating = 0.349
weight of hydrate before heateing = 2.107
Formula:
Weight percent of water = [ (weight of water) / (weight of the hydrate) ] * 100
Solution:
Weight percent of water = [ 0.349 / 2.107] * 100 ≈ 16.6 %
Answer: 16.6%
Answer:
6 neutrons
Explanation:
6 neutrons
Boron having an atomic number of 5 means that it will have 5 protons. 11 atomic mass units in total. Neutrons also have a atomic mass unit of 1. So there are 6 neutrons
Answer: (3) ppm
Explanation: Concentration is defined as the amount of solute dissolved in a known amount of the solvent or a solution.
Parts per million (ppm) is used to express the concentration when a very small quantity of solute is present in a large quantity of the solution. It is defined as the mass of solute present in one milion
parts by mass of the solution.

L/s is used to express flow rate.
J/g is used to express energy per unit mass.
kPa is used to express pressure.