Just look here https://www.jiskha.com/search/index.cgi?query=describe+how+you+can+crystallize+potassium+nitrate+fro...
Answer:
The correct options are;
C. The magnitude of attraction from its nucleus
D. The distance between the electrons and its nucleus
Explanation:
The atomic radius reduces, within a given period, as we move from left to right, the number of protons increases alongside the number of electrons and the while the quantum shell to which the extra electrons are added to is the same. Therefore, the radius of the atom is dependent on the magnitude of the attraction from the nucleus
Similarly, as we progress to the next period, with an extra quantum shell, the atomic radius is seen to increase.
Therefore, the atomic radius is determined by the distance between the electrons and its nucleus.
Answer:
H2 < CH3Cl < HF
Explanation:
The intermolecular forces are the forces that bond the molecules together in a substance. There are three types of these forces:
- Dipole induced -dipole induced, or London dispersion -> Is the weakest and is presented in nonpolar molecules, in which a dipole is induced and so the molecules are joined together;
- Dipole-dipole -> Is stronger than the London dispersion and occurs in a polar molecule. In this case, the dipole already exists (partial positive and negative charges), so the poles are attracted;
- Hydrogen bond -> It's the strongest and is formed when the hydrogen is bonded with a higher electronegativity element (F, O, and N).
So, the molecule of H2 is linear and formed by the same element, so, is nonpolar, and has London dispersion forces. The molecule of CH3Cl has 3 nonpolar bonds (C-H), and one polar bond (C-Cl), so it's polar and has dipole-dipole forces. And the HF molecule has hydrogen bonds.
*A polar bond is a bond formed by elements with different electronegativities.
Answer:
So the molar mass of a chemical compound is defined as the mass of a sample of that compound is divided by the amount of the substance in that sample measured in the moles.