Answer : The significant digit is 6
Explanation :
Multiply
by 
Now, on multiplying


Now, the significant digit is 6.
Hence, this is the required solution.
Answer:
3.5 hours
Explanation:
Speed = distance/time
Let the distance that Fiora biked at 20 mi/h through be x miles and the time it took her to bike through that distance be t hours at 20 mi/h
Then, the rest of the distance that she biked at 14 mi/h is (112 - x) miles
And the time she spent biking at 14 mi/h the rest of the distance = (6.5 - t) hours
Her first biking speed = 20 mph = 20 miles/hour
Speed = distance/time
20 = x/t
x = 20 t (eqn 1)
Her second biking speed = 14 mph = 14 miles/hour
14 = (112 - x)/(6.5 - t)
112 - x = 14 (6.5 - t)
112 - x = 91 - 14t (eqn 2)
Substitute for x in (eqn 2)
112 - 20t = 91 - 14t
20t - 14t = 112 - 91
6t = 21
t = 3.5 hours
x = 20t = 20 × 3.5 = 70 miles.
(112 - x) = 112 - 70 = 42 miles
(6.5 - t) = 6.5 - 3.5 = 3 hours
Meaning that she travelled at 20 mi/h for 3.5 hours.
The given question is incomplete. The complete question is as follows.
An oxygen molecule is adsorbed onto a small patch of the surface of a catalyst. It's known that the molecule is adsorbed on 1 of 36 possible sites for adsorption. Calculate the entropy of this system.
Explanation:
It is known that Boltzmann formula of entropy is as follows.
s = k ln W
where, k = Boltzmann constant
W = number of energetically equivalent possible microstates or configuration of the system
In the given case, W = 36. Now, we will put the given values into the above formula as follows.
s = k ln W
=
= 
Thus, we can conclude that the entropy of this system is
.
Answer:
Option B is the correct answer.
Explanation:
Let us consider 40 meter above ground as origin.
Initial velocity = 17 m/s
Final velocity = 24 m/s
Acceleration = 9.81 m/s
We have equation of motion v² = u² + 2as
Substituting
24² = 17² + 2 x 9.81 x s
s = 14.63 m
Distance traveled by rock = 14.63 m down.
Height of rock from ground = 40 - 14.63 = 25.37 m = 25.4 m
Option B is the correct answer.