Answer:
The correct answer is: waxing gibbous, 3 days
Explanation:
Waning quarter moon: hair removal time and bangs cuts.
The growing quarter as a moment of growth, development and evolution. On the contrary, the waning moon is associated with a time of completion, debugging or liquidation of pending issues.
We must take advantage of the influence of the lunar cycle in our favor according to the action we are going to take. If you have trouble growing your hair, try to go to the hairdresser in a crescent moon: it will grow faster. It is no nonsense. Since I cut my bangs to the Cleopatra, the touch-ups last me for another 1-1.5 weeks. As I reviewed the bangs in a growing room, in just a couple of weeks I was returning to the hairdresser.
That affects hair removal. There are many people who take appointments to the beautician to shave by consulting the lunar calendar. The hair removal done as soon as the dwindling is the best because it lasts longer, lasts for another week until the next appointment.
Answer:
Twice
Step-by-Step Explanation:
Time between 7:00 PM and 1:00 AM: 6 hours
Distance: 4818km
Since the distance is 4818km, and the time is 6 hours, you divide 4818 by 6.
803.0000015999 km/h.
The average speed is 803 km/h
Which considering the ideal case scenario if the plane starts at 0 reaches the speed of 803 and the end reduces its speed from 803 to 0. This means we have come across the value of 800 at least twice. Hence, the plane was travelling at a speed of 800 km/h at least 2 times.
The answer would be B.
(V=IR, 12-10i, 12/10=1.2)
The ration of the rms speed of 235uf6 to that of 238uf6 is 1.004.
The molecular mass of 235uf6 is 349, while that of 238uf6 is 352.
The rms speed is calculated as
v=√(3RT/m)
Thus the ratio rms speed of 235uf6 to 238uf6 is calculated as
r=√(352/349)=1.004
Answer:
The solution to the question above is explained below:
Explanation:
For which solid is the lumped system analysis more likely to be applicable?
<u>Answer</u>
The lumped system analysis is more likely to be applicable for the body cooled naturally.
<em>Question :Why?</em>
<u>Answer</u>
Biot number is proportional to the convection heat transfer coefficient, and it is proportional to the air velocity. When Biot no is less than 0.1 in the case of natural convection, then lumped analysis can be applied.
<u>Further explanations:</u>
Heat is a form of energy.
Heat transfer describes the flow of heat across the boundary of a system due to temperature differences and the subsequent temperature distribution and changes. There are three different ways the heat can transfer: conduction, convection, or radiation.
Heat transfer analysis which utilizes this idealization is known as the lumped system analysis.
The Biot number is a criterion dimensionless quantity used in heat transfer calculations which gives a direct indication of the relative importance of conduction and convection in determining the temperature history of a body being heated or cooled by convection at its surface. In heat transfer analysis, some bodies are observed to behave like a "lump" whose entire body temperature remains essentially uniform at all times during a heat transfer process.
Conduction is the transfer of energy in the form of heat or electricity from one atom to another within an object and conduction of heat occurs when molecules increase in temperature.
Convection is a transfer of heat by the movement of a fluid. Convection occurs within liquids and gases between areas of different temperature.