my hypothesis is that If you drop a piece of buttered toast, it will land butter side down.
I tested it by dropping 10 pieces of buttered toast off the table and noted on which side it landed
It could be falsified cause I just made all of this up. In essence, it's like flipping a coin, 50/50 chance so I could say that 5 landed butter up and 5 landed butter down.
One of them would be power source.
Answer:
Pressure of the gas = 12669 (Pa) and height of the oil is 1,24 meters
Explanation:
First, we can use the following sketch for an easy understanding, in the attached image we can see the two pressure gauges the one with mercury to the right and the other one with oil to left. We have all the information needed in the mercury pressure gauge, so we can determine the pressure inside the vessel because the fluid is a gas it will have the same pressure distributed inside the vessel (P1).
Since P1 = Pgas, we can use the same formula, but this time we need to determine the height of the column of oil in the pressure gauge.
The result is that the height of the oil column is higher than the height of the one that uses mercury, this is due to the higher density of mercury compared to oil.
Note: the information given in the units of the fluids is not correct because the density is always expressed in units of (mass /volume)
Answer:
Power, P = 600 watts
Explanation:
It is given that,
Mass of sprinter, m = 54 kg
Speed, v = 10 m/s
Time taken, t = 3 s
We need to find the average power generated. The work done divided by time taken is called power generated by the sprinter i.e.

Work done is equal to the change in kinetic energy of the sprinter.


P = 900 watts
So, the average power generated by the sprinter is 900 watts. Hence, this is the required solution.
Answer:
Explanation:
We shall represent speed in vector form
First speed
v₁ = 1.5 cos 14 i + 1.5 sin 14 j
= 1.455 i + 0.363 j
v₂ = 4.4 cos 33 i + 4.4 sin 33 j
= 3.69 i + 2.39 j
v₂ - v₁
3.69 i + 2.39 j - 1.455 i - 0.363 j
= 2.235 i + 2.027 j
acceleration
= v₂ - v₁ / time
= ( 2.235 i + 2.027 j ) / 23
= .097 i + .088 j
force = mass x acceleration
= 398 x ( .097 i + .088 j )
= 38.6 i + 35.02 j
Magnitude of force F
F² = 38.6² + 35.02²
F = 52.11 N
Tan θ = 35.02 / 38.6
θ = 42° north of east.