Answer:
4.5 g/L.
Explanation:
- To solve this problem, we must mention Henry's law.
- Henry's law states that at a constant temperature, the amount of a given gas dissolved in a given type and volume of liquid is directly proportional to the partial pressure of that gas in equilibrium with that liquid.
- It can be expressed as: P = KS,
P is the partial pressure of the gas above the solution.
K is the Henry's law constant,
S is the solubility of the gas.
- At two different pressures, we have two different solubilities of the gas.
<em>∴ P₁S₂ = P₂S₁.</em>
P₁ = 525.0 kPa & S₁ = 10.5 g/L.
P₂ = 225.0 kPa & S₂ = ??? g/L.
∴ S₂ = P₂S₁/P₁ = (225.0 kPa)(10.5 g/L) / (525.0 kPa) = 4.5 g/L.
Answer: Option (A) is the correct answer.
Explanation:
Nitrogen is a non-metal and it is known that non-metals do not conduct electricity. Thus, it will be least conductive out of the given options.
Whereas antimony (Sb) is a metalloid. Metalloid are the substance that show properties of both metals and non-metals. Thus, antimony will conduct electricity.
On the other hand, bismuth (Bi) is a metal hence, it will conduct electricity.
Thus, we can conclude that the order from least conductive to most conductive will be nitrogen (N), antimony (Sb), bismuth (Bi).
Answer:
All molecules of a compound have one type of atom.FLASE, compounds aren't one type, there compounds
Each molecule of a compound has different properties false
All molecules of a compound have the same properties true
Each atom of a molecule is the same FALSE
Explanation:
hard to say for sure but i think its 3
It would have to be 40.0 only because it wouldn’t add up
Answer:
Alchemy is a practice of making gold from other metals.
Explanation:
Alchemy is a method which is practiced by the ancient scientists of Europe, Africa and Asia trying to produced gold from other metals. This method was failed to produced gold from metals and all scientist suggested that metals can not be converted into gold. Greeks were the people who presented the theory of alchemy in the first few centuries of CE.