Your Question: {How many objects are in a mole?}
Helpful Knowledge: (We Know the amount in an object: 12g or C^12)
{A number of objects that are in a mole of objects?}
Well for the question it is pretty easy to answer because a number of objects in One mole would equal 6.02 × 10²³
Which 6.02 × 10²³ is an Avogadro's Number.
So it depends on how many objects you have.
So for every object you have, One mole would equal 6.02 × 10²³. Or 62,000,000,000,000,0000,000,000. Big Number am I right. So that's why we just use 6.02 × 10²³.
Anywho, your answer would be 6.02 x 10²³ x n.
N would equal the number of objects you're calculating.
Final Answer: 6.02 x 10²³ x (n) = (Your Answer)
Hope this helps! Have a great day. If you need anything else, feel free to hope right in my inbox. Or comment below. ↓
Answer:
35
Explanation:
An atom is neutral, meaning that the number of protons is equal to the number of electrons.
Answer:
Na₂CO₃•H₂O
Explanation:
After it is heated, the remaining mass is the mass of sodium carbonate.
30.2 g Na₂CO₃
Mass is conserved, so the difference is the mass of the water:
35.4 g − 30.2 g = 5.2 g H₂O
Convert masses to moles:
30.2 g Na₂CO₃ × (1 mol Na₂CO₃ / 106 g Na₂CO₃) = 0.285 mol Na₂CO₃
5.2 g H₂O × (1 mol H₂O / 18.0 g H₂O) = 0.289 mol H₂O
Normalize by dividing by the smallest:
0.285 / 0.285 = 1.00 mol Na₂CO₃
0.289 / 0.285 = 1.01 mol H₂O
The ratio is approximately 1:1. So the formula of the hydrate is Na₂CO₃•H₂O.
H₂S
<h3>Further explanation</h3>
Given
ΔH fusion and ΔH vaporization of different substances
Required
The substance absorbs 58.16 kJ of energy when 3.11 mol vaporizes
Solution
We can use the formula :
Q=heat/energy absorbed
n = moles
The heat absorbed : 58.16 kJ
moles = 3.11
so ΔH vaporization :
The correct substance which has ΔH vaporization = 18.7 kj / mol is H₂S
(H₂S from the data above has ΔH fusion = 2.37 kj / mol and ΔH vaporization = 18.7 kj / mol)
Answer:
A solvent is a substance which dissolves a solute. When a solvent dissolves into a solute, it creates a solution