Rechargeable batteries use a reversible reaction medium to convert electrical current to a form of chemical energy which can be stored for future use.
<h3>
What is a rechargeable battery?</h3>
A rechargeable battery is a type of battery that can be charged many times by passing electric current through the cells in a reversible reaction.
<h3>How does recahargeable battery store energy?</h3>
When electrical energy from an outside source is applied to a secondary cell (reachargeable battery), the negative to positive electron flow that occurs during discharge is reversed, and the cell's charge is restored. This process is called reversible reaction.
Thus, rechargeable batteries use a reversible reaction medium to convert electrical current to a form of chemical energy which can be stored for future use.
Learn more about reversible reaction here: brainly.com/question/11412193
In dilute solutions, the unit osmolarity is being used. It usually has units milliosmols per liter of solution or mOsmol/L. An osmole defines the number of moles of the solute that would have an effect on the osmotic pressure of the solution. Osmolarity is calculated by the product of the molarity and the number of particles in the solution which is 2 for potassium chloride. We calculate as follows:
Osmolarity = molarity (# of particles)250 mosmol/L ( 1 osmol / 1000 osmol) = x moles / .100 L (2)
x moles = 0.0125 mol KCl
mass KCl = 0.0125 mol KCl ( 39 + 35.5 g/mol) = 0.93125 g KCl
430 g of AgCl would be needed to make a 4.0m solution with a volume of 0.75 L.
<h3>What is Molarity?</h3>
- The amount of a substance in a specific volume of solution is known as its molarity (M).
- The number of moles of a solute per liter of a solution is known as molarity.
<h3>Calculation of Required amount of AgCl</h3>
Remember that mol/L is the unit of molarity (M).
We can compute the necessary number of moles of solute by multiplying the concentration by the liters of solution, according to dimensional analysis.
0.75L×4.0M=3.0mol
Then, using the periodic table's molar mass for AgCl, convert from moles to grams:
3.0mol×143.321gmol=429.963g
The final step is to round to the correct significant figure, which in this case is two: 430g.
Hence, 430 g of AgCl would be needed to make a 4.0m solution with a volume of 0.75 L.
Learn more about Molarity here:
brainly.com/question/8732513
#SPJ4
Answer:
Explanation:
mass of the solution = volume x density = 200 x 1 = 200 gm
heat absorbed = m x s x Δ t , s is specific heat , Δt is rise in temperature
= 200 x 4.18 x ( 31.3 - 24.6 )
= 5601 J .
This is the enthalpy change required.
Explanation:
A column on the periodic table represents a period.
These are some of the variations observed across a period;
- Atomic radii decreases progressively from left to right due to the progressive increase in the nuclear charge without an attendant increase in the number of electronic shells.
- Ionization energy increases progressively from left to right due to decreasing atomic radii.
- Electronegativity increases from left to right.
- Electropositivity decreases across a period.