1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
saw5 [17]
4 years ago
5

A bar extends perpendicularly from a vertical wall. The length of the bar is 2 m, and its mass is 10 kg. The free end of the rod

is attached to a point on the wall by a light cable, which makes an angle of 30° with the bar. Find the tension in the cable.
Physics
1 answer:
Simora [160]4 years ago
6 0

Answer:

T = 98.1 N

Explanation:

Given:

- mass of bar m = 10 kg

- Length of the bar L = 2 m

- Angle between Cable and wall Q = 30 degres

Find:

- Find the tension in the cable.

Solution:

- Take moments about intersection of bar and wall, to be zero (static equilibrium)

                                    (M)_a = 0

                                    T*sin( 30 )*L - m*g*L/2 = 0

                                    T*sin(30) - m*g / 2 = 0

                                    T = m*g / 2*sin(30)

                                    T = 10*9.81 / 2*sin(30)

                                    T = 98.1 N

You might be interested in
Pls help i will give u brainliest!
Ivan

Answer: B.

Explanation:

4 0
3 years ago
In a catapult, energy is transferred into useful kinetic energy stores. What store is the energy in when it is the catapult?
yawa3891 [41]

Answer:

actually I was just wondering what you are thinking

6 0
3 years ago
A cylinder is resting on one of its circular faces on the ground. The weight of the cylinder is 4872 N and the cylinder exerts a
kondor19780726 [428]

Answer:

Explanation:

I HOPE THIS HELPS PLEASE MARK ME AS BRAINLIEST

6 0
4 years ago
Read 2 more answers
Which light packs the highest energy per photon? 1. infrared 2. red 3. blue 4. ultraviolet 5. green?
WINSTONCH [101]
A single photon carries an energy equal to
E=hf
where h is the Planck's constant and f is the frequency of the photon.
This means that the higher the frequency of the light, the higher the energy. Among the 5 different options mentioned by the problem, the light with highest frequency is ultraviolet, which has frequencies in the range [3-30] PHz, while visible light (red, blue, green) and infrared have lower frequency, so ultraviolet light has the highest energy per photon.
3 0
3 years ago
To get up on the roof, a person (mass 70.0kg) places a 6.00-m aluminum ladder (mass 10.0 kg) against the house on a concrete pad
Julli [10]

The magnitude of the forces acting at the top are;

\mathbf{F_{Top, \ x}} = 132.95 N

\mathbf{F_{Top, \ y}} = 0

The magnitude of the forces acting at the bottom are;

\mathbf{F_{Bottom, \ x}} = \mathbf{ F_f} = -132.95 N

\mathbf{F_{Bottom, \ y}} = 784.8 N

The known parameters in the question are;

The mass of the person, m₁ = 70.0 kg

The length of the ladder, l = 6.00 m

The mass of the ladder, m₂ = 10.0 kg

The distance of the base of the ladder from the house, d = 2.00 m

The point on the roof the ladder rests = A frictionless plastic rain gutter

The location of the center of mass of the ladder, C.M. = 2 m from the bottom of the ladder

The location of the point the person is standing = 3 meters from the bottom

g = The acceleration due to gravity ≈ 9.81 m/s²

The required parameters are;

The magnitudes of the forces on the ladder at the top and bottom

The strategy to be used;

Find the angle of inclination of the ladder, θ

At equilibrium, the sum of the moments about a point is zero

The angle of inclination of the ladder, θ = arccos(2/6) ≈ 70.53 °C

Taking moment about the point of contact of the ladder with the ground, <em>B </em>gives;

\sum M_B = 0

Therefore;

\sum M_{BCW} = \sum M_{BCCW}

Where;

\sum M_{BCW} = The sum of clockwise moments about <em>B</em>

\sum M_{BCCW} = The sum of counterclockwise moments about <em>B</em>

Therefore, we have;

\sum M_{BCW} = 2  × (2/6) × 10.0 × 9.81 + 3.0 × (2/6) × 70 × 9.81

\sum M_{BCCW} = F_R × √(6² - 2²)

Therefore, we get;

2  × (2/6) × 10.0 × 9.81 + 3.0 × (2/6) × 70 × 9.81  = F_R × √(6² - 2²)

F_R  = (2  × (2/6) × 10.0 × 9.81 + 3.0 × (2/6) × 70 × 9.81)/(√(6² - 2²)) ≈ 132.95

The reaction force on the wall, F_R ≈ 132.95 N

We note that the magnitude of the reaction force at the roof, F_R = The magnitude of the frictional force of bottom of the ladder on the floor, F_f but opposite in direction

Therefore;

F_R = -F_f

F_f = - F_R ≈ -132.95 N

Similarly, at equilibrium, we have;

∑Fₓ = \sum F_y = 0

The vertical component of the forces acting on the ladder are, (taking forces acting upward as positive;

\sum F_y = -70.0 × 9.81 - 10 × 9.81 + F_{By}

∴ The upward force acting at the bottom, F_{By} = 784.8 N

Therefore;

The magnitudes of the forces at the ladder top and bottom are;

At the top;

\mathbf{F_{Top, \ x}} = F_R ≈ 132.95 N←

\mathbf{F_{Top, \ y}} = 0 (The surface upon which the ladder rest at the top is frictionless)

At the bottom;

\mathbf{F_{Bottom, \ x}} = F_f ≈ -132.95 N →

\mathbf{F_{Bottom, \ y}} = F_{By} = 784.8 N ↑

Learn more about equilibrium of forces here;

brainly.com/question/16051313

8 0
3 years ago
Other questions:
  • Why is it advisable to use a small value for the incidence angle when performing a glass prism experiment
    12·1 answer
  • Which of these mixtures would be easiest to separate?
    14·1 answer
  • What are 3 states of matter.write 1 fact for each state of matter
    15·2 answers
  • For a damped simple harmonic oscillator, the block has a mass of 1.2 kg and the spring constant is 9.8 N/m. The damping force is
    13·1 answer
  • Which Best describes a characteristic of the jet stream?
    10·1 answer
  • The food calorie, equal to 4186 J, is a measure of how much energy is released when food is metabolized by the body. A certain b
    6·1 answer
  • (a) Determine the capacitance of a Teflon-filled parallel-plate capacitor having a plate area of 1.80 cm2 and a plate separation
    13·1 answer
  • While standing at the edge of the roof of a building, a man throws a stone upward with an initial speed of 6.63 m/s. The stone s
    12·1 answer
  • Which chemical reaction is most likely the slowest?
    9·1 answer
  • What pattern is seen on the moon from earth?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!