Thay are on high towers because if it was below how would the water flow. Putting it on high towers gives you an advantage of the gravity with means you got free pressure without having to use a pump.
<span>Water pressure = Height * density * gravity</span>
Answer:

& 
Explanation:
Given:
- interior temperature of box,

- height of the walls of box,

- thickness of each layer of bi-layered plywood,

- thermal conductivity of plywood,

- thickness of sandwiched Styrofoam,

- thermal conductivity of Styrofoam,

- exterior temperature,

<u>From the Fourier's law of conduction:</u>

....................................(1)
<u>Now calculating the equivalent thermal resistance for conductivity using electrical analogy:</u>




.....................(2)
Putting the value from (2) into (1):


is the heat per unit area of the wall.
The heat flux remains constant because the area is constant.
<u>For plywood-Styrofoam interface from inside:</u>



&<u>For Styrofoam-plywood interface from inside:</u>



Answer:
h = 599.5 m
Explanation:
Given,
height of structure = 828 m
weight of the tourist = 184 lb
= 184 x 0.45359 = 83.43 Kg
Potential energy = 187000 J
PE = m gd


h = 228.5 m
Height of the room above the ground.
h = 828 - 228.5
h = 599.5 m
Height of the floor above ground is equal to 599.5 m.
Increase in sea water pollution