Answer:
Explanation:
Given that,
AC frequency of 2.3KHz
f=2.3×10³Hz
Vrms produce is
Vrms=1.5V
Current rms
Irms= 31mA
The capacitor is reconnected to a generator of frequency
f=4.8KHz =4800Hz
The current rms becomes
Irms= 85mA
Vrms=?
Solution
First genrator
The capacitive reactance is given as
Xc=Vrms/Irms
Xc=1.5/31×10^-3
Xc=48.39 ohms
Now, to know the capacitance of the capacitor
Xc=1/2πfC
Then,
C=1/2πfXc
So,
C=1/2×π×2300×48.39
C=1.43×10^-6C
C=1.43μF
Note: the capacitance of the capacitor did not change,
Now for generator two.
The reactance are given as
Xc=1/2πfC
Xc=1/2×π×4800×1.43×10^-6
Xc=23.19ohms
Then,
Vrms2=Irms2 ×Xc
Vrms2=85×10^-3×23.19ohms
Vrms2=1.97V
Vrms2=1.97Volts
Answer:
the work required to turn the crank at the given revolutions is 8,483.4 J
Explanation:
Given;
torque required to turn the crank, T = 4.50 N.m
number of revolutions, = 300 turns
The work required to turn the crank is given as;
W = 2πT
W = 2 x 3.142 x 4.5
W = 28.278 J
1 revolution = 28.278 J
300 revlotions = ?
= 300 x 28.278 J
= 8,483.4 J
Therefore, the work required to turn the crank at the given revolutions is 8,483.4 J
We now that follow newton rules f=ma so net force equal to mass*acceleration=>f=50*1.5=75 N
Nope.
Energy is directly proportional to frequency. and when you calculate energy, you multiply frequency with a constant number called "Planck's Constant"
E = hf
Hope this helps!