Answer: What else is produced when sodium carbonate decomposes?
Explanation:
To solve this exercise, we will first proceed to calculate the electric force given by the charge between the proton and the electron (it). From the Force we will use Newton's second law that will allow us to find the acceleration of objects. The Coulomb force between two charges is given as

Here,
k = Coulomb's constant
q = Charge of proton and electron
r = Distance
Replacing we have that,


The force between the electron and proton is calculated. From Newton's third law the force exerted by the electron on proton is same as the force exerted by the proton on electron.
The acceleration of the electron is given as



The acceleration of the proton is given as,



The easiest, non-technical way to think about it is like this:
-- A scalar is a quantity that has a size but no direction.
Those include temperature, speed, cost, volume, distance, etc.
One number is all there is to know about it, and there's no way you can
add more of the same stuff to it that would cancel both of them out.
-- A vector is a quantity that has a size and also has a direction.
Those include force, displacement, velocity, acceleration, etc.
It takes more than one number to completely describe one of these.
Also, if you combine two of the same vector quantity in different ways,
you can get different results, and they can even cancel each other out.
Here are some examples. Notice that in each of these examples,
every speed has a direction that goes along with it. This turns the
scalar speed into a vector velocity.
If you're walking inside a bus, and the bus is driving along the road,
then your velocity along the road is the sum of your walking velocity
inside the bus plus the velocity of the bus along the road.
-- If you're walking north up the middle of the bus at 2 miles per hour
and the bus is driving north along the road at 20 miles per hour, then
your velocity along the road is 22 miles per hour north.
-- If you're walking south towards the back of the bus at 2 miles per hour
and the bus is driving north along the road at 5 miles per hour, then your
velocity along the road is 3 miles per hour north.
-- If you're walking south towards the back of the bus at 2 miles per hour
and the bus is just barely rolling north along the road at 2 miles per hour,
then your velocity along the road is zero.
-- If you're in a big railroad flat-car that's rolling north along the track
at 2 miles per hour, and you walk across the flat-car towards the east
at 2 miles per hour, then your velocity along the ground is 2.818 miles
per hour toward the northeast.
Answer:
0.000025s
Explanation:
Period it’s. : T(s)= 1/f(Hz)=1/40000Hz=0.000025s
Explanation:
what exactly are you asking for?