1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zina [86]
3 years ago
6

A rocket is fired from rest from the ground (y = 0) at time t0 = 0 s. As the rocket is burning its fuel, it moves vertically upw

ard with a constant acceleration of 3.25 m/s2 . At t1 = 10.0 s, all the fuel has been used up and the rocket is in free fall. Air resistance can be neglected up until t3 = 17.5 s when the rocket deploys a parachute. At this time the rocket immediately reaches its terminal velocity; this means that the rocket is no longer accelerating.
1a. (10 points) Find the maximum height of the rocket with respect to the ground. How long after being launched does it take for the rocket to reach this height?
1b. (10 points) How long after being launched does it take for the rocket to return to the ground? What is the rocket’s displacement over this entire trip? What is the rocket’s average velocity over this entire trip? What is the rocket’s average speed over this entire trip? What is the rocket’s average acceleration over this entire trip? Be sure to include both magnitude and direction for any vector quantities.
1c. (10 points) What is the rocket’s displacement from ta = 12.0 s to tb = 20.0 secs? What is the rocket’s average velocity from ta to tb? What is the rocket’s average speed from ta to tb? What is the rocket’s average acceleration from ta to tb? Be sure to include both magnitude and direction for any vector quantities.
1d. (10 points) Sketch a y v. t plot for the motion of the rocket. Be sure to label the positions of the rocket at t0 = 0 s, t1 = 10.0 s, t2 (when the rocket is at its highest point), t3 = 17.5 s, and t4 (when the rocket returns to the ground).

Physics
1 answer:
elixir [45]3 years ago
6 0

Answer:

Explanation:

attached is the solution

You might be interested in
6 A test of a driver's perception/reaction time is being conducted on a special testing track with level, wet pavement and a dri
mylen [45]

Answer:

a. 10.5 s b. 6.6 s

Explanation:

a. The driver's perception/reaction time before drinking.

To find the driver's perception time before drinking, we first find his deceleration from

v² = u² + 2as where u = initial speed of driver = 50 mi/h = 50 × 1609 m/3600 s = 22.35 m/s, v = final speed of driver = 0 m/s (since he stops), a = deceleration of driver and s = distance moved by driver = 385 ft = 385 × 0.3048 m = 117.35 m

So, a = v² - u²/2s

substituting the values of the variables into the equation, we have

a = v² - u²/2s

a = (0 m/s)² - (22.35 m/s)²/2(117.35 m)

a =  - 499.52 m²/s²/234.7 m

a = -2.13 m/s²

Using a = (v - u)/t where u = initial speed of driver = 50 mi/h = 50 × 1609 m/3600 s = 22.35 m/s, v = final speed of driver = 0 m/s (since he stops), a = deceleration of driver = -2.13 m/s² and t = reaction time

So, t = (v - u)/a

Substituting the values of the variables into the equation, we have

t = (0 m/s - 22.35 m/s)/-2.13 m/s²

t = - 22.35 m/s/-2.13 m/s²

t = 10.5 s

b. The driver's perception/reaction time after drinking.

To find the driver's perception time after drinking, we first find his deceleration from

v² = u² + 2as where u = initial speed of driver = 50 mi/h = 50 × 1609 m/3600 s = 22.35 m/s, v = final speed of driver = 30 mi/h = 30 × 1609 m/3600 s = 13.41 m/s, a = deceleration of driver and s = distance moved by driver = 385 ft = 385 × 0.3048 m = 117.35 m

So, a = v² - u²/2s

substituting the values of the variables into the equation, we have

a = v² - u²/2s

a = (13.41 m/s)² - (22.35 m/s)²/2(117.35 m)

a = 179.83 m²/s² - 499.52 m²/s²/234.7 m

a = -319.69 m²/s² ÷ 234.7 m

a = -1.36 m/s²

Using a = (v - u)/t where u = initial speed of driver = 50 mi/h = 50 × 1609 m/3600 s = 22.35 m/s, v = final speed of driver = 30 mi/h = 30 × 1609 m/3600 s = 13.41 m/s, a = deceleration of driver = -1.36 m/s² and t = reaction time

So, t = (v - u)/a

Substituting the values of the variables into the equation, we have

t = (13.41 m/s - 22.35 m/s)/-1.36 m/s²

t = - 8.94 m/s/-1.36 m/s²

t = 6.6 s

4 0
3 years ago
What causes earth to have a complete year
RUDIKE [14]

Answer:

Earth's Tilt and The Seasons. Earth, like all of the planets in the Solar System, travels around the Sun. One complete orbit of the Sun is known as a year and it takes Earth 365 days, 5 hours, 48 minutes and 46 seconds to complete an orbit. The changing seasons are caused by the fact that Earth is tilted. please vote me brainliest i can't message no one cuz i haven't got enough points i'm desperate.

Explanation:

7 0
3 years ago
A 10,000 N net force is accelerating a car at a rate of 5.5m/s^2. What is the cars mass
ycow [4]

Answer:

If a net horizontal force of 175 N is applied to a bike whose mass is 43 kg what acceleration is produced? What average net force is ... A 10,000 N net force is accelerating a car at a rate of 5.5 m/s2. What is the car's mass? A boy pedals his ...

Explanation:

6 0
3 years ago
If a cup of coffee has temperature 95∘C95∘C in a room where the temperature is 20∘C,20∘C, then, according to Newton's Law of Coo
lina2011 [118]

Answer:

T = 76.39°C

Explanation:

given,

coffee cup temperature = 95°C

Room temperature= 20°C

expression

T( t ) = 20 + 75 e^{\dfrac{-t}{50}}

temperature at t = 0

T( 0 ) = 20 + 75 e^{\dfrac{-0}{50}}

T(0) = 95°C

temperature after half hour of cooling

T( t ) = 20 + 75 e^{\dfrac{-t}{50}}

t = 30 minutes

T( 30 ) = 20 + 75 e^{\dfrac{-30}{50}}

T( 30 ) = 20 + 75 \times 0.5488

T(30) = 61.16° C

average of first half hour will be equal to

T = \dfrac{1}{30-0}\int_0^30(20 + 75 e^{\dfrac{-t}{50}})\ dt

T = \dfrac{1}{30}[(20t - \dfrac{75 e^{\dfrac{-t}{50}}}{\dfrac{1}{50}})]_0^30

T = \dfrac{1}{30}[(20t - 3750e^{\dfrac{-t}{50}}]_0^30

T = \dfrac{1}{30}[(20\times 30 - 3750 e^{\dfrac{-30}{50}} + 3750]

T = \dfrac{1}{30}[600 - 2058.04 + 3750]

T = 76.39°C

4 0
3 years ago
The Doppler effect occurs when a source of sound moves
Dmitrij [34]

The Doppler effect occurs when a source of sound or light
moves either toward or away from the observer.

4 0
3 years ago
Other questions:
  • What is the definition of Rock Strata and Law of Original Horizontality?
    11·1 answer
  • Which describes a sound wave?
    15·1 answer
  • What is the period of vibration for a wave with a frequency of 100 hertz?
    15·2 answers
  • Which type of waves cannot travel through a vacuum visible light waves x-ray waves gamma ray ray waves or sound waves
    6·1 answer
  • HELP ASAP!
    12·1 answer
  • Difference Between Newton's first law and third law of motion​
    5·2 answers
  • 1. A train is moving north at 5 m/s on a straight track. The engine is causing it to accelerate northward at 2 m/s^2.
    10·1 answer
  • O.
    7·1 answer
  • Which of the following is a unit of acceleration?
    11·1 answer
  • A description of a phenomenon
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!