Velocity of the mass after 11 seconds = ( value of the gravitational acceleration) * ( time )
velocity = ( 9.81 m / s^2 ) ( 11)
velocity = 107.91 meters per second
As the ball is moving in air as well as we have to neglect the friction force on it
So we can say that ball is having only one force on it that is gravitational force
So the force on the ball must have to be represented by gravitational force and that must be vertically downwards
So the correct FBD will contain only one force and that force must be vertically downwards
So here correct answer must be
<em>Diagram A shows a box with a downward arrow. </em>
Answer:
Distance travelled is 7 meters and the displacement is 3 meters
Curved line
Explanation:
Acceleration of motion is represented by a curved line on a non-linear distance-time graph.
The acceleration of a non-linear motion is depicted using a parabola which is a curve. This implies that the velocity is constantly changing and the distance covered by the body is also changing with equal amount of time.
- A plot of this will give a parabola. This can be further established using one of the equations of motion below:
x = u +
at ²
This is a quadratic function where:
x is the distance
u is the initial velocity
t is the time
a is acceleration
A quadratic function gives a curved line which is a parabola.
Learn more:
Acceleration brainly.com/question/10932946
#learnwithBrainly