2H₂ + O₂ ⇒ 2H₂O
<h3>Further explanation</h3>
Conservation of mass states that
<em>In a closed system, the masses before and after the reaction are the same</em>
So it can be concluded
- mass of the reactants = mass of the products
- mass cannot be created or destroyed
- The number of atoms involved in a reaction remains the same⇒ number of moles also the same
- chemical equation in balanced form
So let's see which of the several options , which one has the same number of atoms on both sides of the equation
2H₂ + O₂ ⇒ 2H₂O
H ⇒ left 4, right 4
O ⇒ left 2, right 2
so the equation is in balance and represents the Law of Conservation of
Mass
<span>Clouds are made of tiny drops of water or ice crystals that settle on dust particles in the atmosphere. The droplets are so small - a diameter of about a hundredth of a millimetre - that each cubic metre of air will contain 100 million<span>droplets</span></span>
Answer: amount = 2466.95L
Explanation:
given that the speed is = 1900./kmh i.e. 1hr/900km
distance = 1050km
the fuel burns at a rate of 74.4 L/min
therefore the amount of fuel that the jet consumes on a 1050.km becomes;
total fuel used = time × fuel burning rate
where time = distance / speed
∴ total fuel used (consumed) = time × fuel burning rate
total fuel consumed = (1050km × 1hr/1900km) × (60min/ 1hr × 74.4L/1min)
total fuel consumed = 2466.95L
Answer:
v = 46.5 m/s
Explanation:
Given data:
Mass of car = 1210 kg
Momentum of car = 56250 kg m/s
Velocity of car = ?
Solution:
Formula:
p = mv
p = momentum
m = mass
v = velocity
Now we will put values in formula:
56250 kg m/s = 1210 kg × v
v = 56250 kg m/s / 1210 kg
v = 46.5 m/s
So a car having mass of 1210 kg with momentum 56250 kg m/s having 46.5 m/s velocity.
Answer:

Explanation:
The steps of the Ostwald process:



Combinning the equations:

+

+

=

Simplifying:


The overall reaction is endothermic becuase the formation of new chemical bonds requires energy consumption.