Answer:
Explanation: “Insoluble” generally means that a substance does not dissolve in water. Some examples include: sand, fats, wood, metals, and plastic. When we put them in water and try to mix them, they will not dissolve.
Explanation:
Answer:
Option D: it's ability to lose electrons
Explanation:
Alkali metals are usually discovered in nature. They have highly reactivity at STP conditions (standard temperature and pressure conditions) and easily lose their outermost electron to form positive ions known that have a charge of +1.
Thus, what can determine the extent of reactivity of an alkali metal, is it's ability to lose electrons
Answer:
Throughout the explanations section below you will find a description of the question.
Explanation:
(1)
- Whether a solution would be positioned inside a separative funnel, combined water, as well as solvent, disintegrate particulate caffeine. In every stage, the caffeine content incorporated relies upon the coefficient of caffeine partitioning throughout the combination of water as well as fluid.
- Thus, increasingly caffeine is taken from the solvent whenever the moment you bring additional solvent. Consequently, we separate the solvent from the single component.
(2)
- For compounds to be mixed thoroughly and separated into different layers, a shuddering mixture within the dividing funnel would be essential.
- However, it vibrates the separation funnel forcefully, restricts airflow within the funnel, which can also induce the fluid under it to burst or causing fluid to fire.
First, we need to be aware that our blood is also a form of liquid.
So, when the astronaut is placed in within the environment that has decreased pressure, the temperature inside the astronaut's body will definitely increase but it won't cause the boiling effect like in water (it won't even break the arteries). But it could endanger the astronaut's life because it makes the blood unable to circulate properly due to unstable blood pressure
Answer:
A) mass divided by volume
Explanation: