The specific gravity of a sample is the ratio of the density of the sample with respect to one standard sample. The standard sample used in specific gravity calculation is water whose density is 1 g/mL. The solution having specific gravity 1.30 is the density of the sample that is 1.30 g/mL. Thus the weight of the 30 mL sample is (30×1.30) = 39 g.
Now the mass of the 10 mL of water is 10 g as density of water is 10 g/mL. Thus after addition the total mass of the solution is (39 + 10) = 49g and the volume is (30 + 10) = 40 mL. Thus the density of the mixture will be
g/mL. Thus the specific gravity of the mixed sample will be 1.225 g/mL.
Explanation:
Ionic equation
NaCl(aq) --> Na+(aq) + Cl-(aq)
Na2SO4(aq) --> 2Na+(aq) + SO4^2-(aq)
In NaCl solution, 1 mole of Na+ is dissociated in 1 liter of solution while in Na2SO4, 2 moles of Na+ is dissociated in 1 liter of solution.
Molecular weight of NA2SO4 = (23*2) + 32 + (16*4)
= 142 g/mol
Molecular weight of NaCl = 23 + 35.5
= 58.5 g/mol
Masses
% Mass of NA+ in Na2SO4 = mass of Na+/total mass of Na2SO4 * 100
= 46/142 * 100
= 32.4%
% Mass of NA+ in NaCl = mass of Na+/total mass of NaCl * 100
= 23/58.5 * 100
= 39.3%
Therefore, the % mass of Na+ in NaCl and Na2SO4 are different so it cannot be used.
They all are correct , so with that being said anyone of them can be right
In a double-replacement reaction, the _____.?
There are many more interesting things to ask about double replacement reactions than are contained in the list given here. But the only correct choice is:
C.reactants are two ionic compounds
Jdusjfbehsbdbegsuxbshsudnd